<aside> 🍖 A residue is the first non zero term in the principle part of the Laurent series evaluated about a point $z=a$

</aside>

🧔‍♀️ Theorem: Residue theorem states that for a curve $C$ that encloses a number of poles of $f(z)$, the closed contour integral around $C$ is

$$ \oint _C f(z)\,\text dz=2\pi i $$

💼 Case: lets evaluate $\oint_C \frac{1}{z(z-2)}\,\text dz$ where $C$ encloses both $z=0$ and $z=2$

$$ \begin{aligned} \oint_C \frac{1}{z(z-2)} \,\text dz =\oint _{C_1} \frac{1}{z(z-2)} \,\text dz \\+\oint _{C_2}\frac{1}{z(z-2)}\,\text dz \end{aligned} $$

Untitled

💃 Example: $f(z)=\frac{z-1}{z(z-2)}$