🧔‍♀️ Theorem: If $f(z)$ is analytic within a circle of radius $R$ centered on $a$ then for all $z$ such that $|z-a|<R$ we can express $f(z)$ as a power series

$$ f(z)=f(a)+f'(a)(z-a)+\frac{1}{2!}f''(a)(z-a)^2+\ldots +\frac{1}{n!}f^{(n)}(z-a)^n+\ldots $$

💫 Proof: Let $C$ be a circular path within a region of convergence of $f(z)$ and let $z$ and $a$ be within this path

$$ \begin{aligned} f(z)&=\frac{1}{2\pi i}\oint_C \frac{f(\xi)}{\xi-z} \,\text d \xi \\ &=\frac{1}{2\pi i}\oint_C \frac{f(\xi)}{(\xi-a)-(z-a)}\,\text d\xi \end{aligned} $$

Making $|\xi-a|>|z-a|$ we get

Untitled

$$ \begin{aligned} f(z)&= \frac{1}{2\pi i} \oint C \frac{f(\xi)}{\xi-a} \left ( 1-\frac{z-a}{\xi-a} \right )^{-1} \\ &= \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi-a}\left ( 1+\frac{z-a}{\xi-a}+ \left ( \frac{z-a}{\xi-a} \right )^2+ \ldots \right ) \\ &=\sum^\infin{n=0} (z-a)^n \frac{1}{n!}f^{(n)}(a) \end{aligned} $$

💃 Example: $f(z)=(1-z)^{-1}$ about $z=1$

$$ \begin{aligned} f'(z)=-\frac{1}{(1+z)^2} \quad f''(z)=\frac{2}{1+z^3} \quad f'''(z)=-\frac{6}{(1+z)^4} \qquad f^{(n)}&= \frac{(-1)^n n!}{(1+z)^{n+1}}\\ f(1)=\frac{1}{2} \qquad f'(1)=-\frac{1}{4} \qquad f''(1)=\frac{1}{8} \qquad f^{(n)}&=\frac{(-1)^n n!}{2^{n+1}} \end{aligned} $$

Laurent’s theorem

💼 Case: Consider a function $f(z)$ which is analytic for $R_1<|z-a|<R_2$, taken around two different contours $C_1$ and $C_2$

Untitled

<aside> 🥫 Laurent series:

$$ f(z)=\sum_{n=0} ^\infin a_n(z-a)^n +\sum^\infin_{n=1} b_n \frac{1}{(z-a)^n} $$

</aside>