The wave equation for a disturbance $y(x,t)$ is:

$$ \frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 y}{\partial x^2} $$

Example gaussian pulse

Consider the propagation of a gaussian pulse on a string

$$ y(x) = A \exp \left ( -\frac{x^2}{a^2} \right ) $$

Where $a$ takes a constant value

gaussian.svg

We can move the pulse by $\pm$ b by doing the following

$$ +b \rightarrow y(x) = A \exp \left ( -\frac{(x-b)^2}{a^2} \right ) \qquad ;\qquad -b \rightarrow y(x) = A \exp \left ( -\frac{(x+b)^2}{a^2} \right ) $$

Thus we can define a constant velocity $v$ such that

$$ y(x,t) = A \exp \left ( -\frac{(x-vt)^2}{a^2} \right ) $$

Sinusoidal waves

$$ y(x,t) = A \sin \left [ \frac{2 \pi}{\lambda} (x-vt) \right ] $$

https://www.desmos.com/calculator/vro1yse8pp

General solution to the 1D wave equation

$$ y(x,t) = f(x-vt) + g(x+vt) $$

Velocity of a travelling wave on a stretched string