<aside> šŸ” Legendre Transformation: Consider a function $f(x)$ (it can also depend on other variables). We define the Legendre transformation in two steps:

  1. Define the variable $x^$ to be the Legendre conjugate variable to $x$: $x^\equiv \frac{\partial f}{\partial x}$
  2. Define the Legendre transformation of $f(x)$: $g(x^)=xx^-f(x)$

After applying the definition of $g(x^)$ it is considered only a function of $x^$ not $x$

</aside>

Hamiltonā€™s Equations

šŸ’Ž Conclusion: The general definition for a system with $N$ degrees of freedom $\{q_i\}$ and Lagrangian $L(\{q_i\},\{\dot q_i\},t)$ is

$$ \boxed{H(\{q_i\},\{p_i\},t)=\sum_ip_i\dot q_i-L(\{q_i\},\{\dot q_i\},t) \quad \text{with}\; p_u=\frac{\partial L}{\partial \dot q_i}} $$

With Hamiltonā€™s equations

$$ \boxed{\frac{\partial H}{\partial p_i}=\dot q_i \quad \frac{\partial H}{\partial q_i}=-\dot p_i \quad \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}} $$

šŸ—’ļø Note: that in Lagrangeā€™s technique we have $N$ second order differential equation while in Hamiltonā€™s we have $2N$ first order differential equations

Revisiting examples using Hamiltonian method

šŸ’ƒ Example: Particle in a conical vase