πŸ“– Definition:

🧠 Reminder: Relativity

<aside> <img src="attachment:017d8657-23ad-4645-85cb-2b4e4b294b5b:Lorentz_transformation.png" alt="attachment:017d8657-23ad-4645-85cb-2b4e4b294b5b:Lorentz_transformation.png" width="40px" />

Lorentz transformation of a boosted frame $S’$ moving at speed $v$ with respect to $S$ are

$$ \begin{aligned} x'&=\gamma(x-\beta t) \qquad \beta = \frac{v}{c}\\ y'&=y \\ z'&=z\\ t'&=\gamma(t-\beta x) \end{aligned} $$

</aside>

<aside> <img src="attachment:a37c3986-01a9-4f94-95d3-f8f7c7d6ec3f:four_vector.png" alt="attachment:a37c3986-01a9-4f94-95d3-f8f7c7d6ec3f:four_vector.png" width="40px" />

Four vector:

πŸ—’οΈ Note: the first 4 components of the $\Lambda^{\mu}_{\nu}=(\genfrac{}{}{0pt}{}{\gamma}{-\beta\gamma}\genfrac{}{}{0pt}{}{-\beta\gamma}{\gamma})$

<aside> <img src="attachment:45272171-4613-4a41-957a-1f51487f40c7:Invariant_quantities.png" alt="attachment:45272171-4613-4a41-957a-1f51487f40c7:Invariant_quantities.png" width="40px" />

Invariant quantities: For a general vector $V^\mu =(A,\vec B)$ we have $|V^\mu|^2=V_\mu V^\mu =A^2-\vec B \cdot \vec B$ which is invariant

</aside>

πŸ’ƒ Example: $\text ds^2 = |X^\mu|^2 = t^2-\vec x \cdot \vec x=t^2 -x^2-y^2-z^2$

<aside> <img src="attachment:9c61e57b-f19c-44f0-854b-c67fab2789f0:invariant_mass.png" alt="attachment:9c61e57b-f19c-44f0-854b-c67fab2789f0:invariant_mass.png" width="40px" />

Invariant mass:

</aside>

πŸ’ƒ Example: find the minimum invariant mass needed for the protons in the interaction $pp\to ppp\overline p$


πŸ’ƒ Example: Consider the decay of $X\to AB$ lets find the mass of $X$ here we dont assume $\rm 1D$

Particle decay width

Heavy particles are unstable and decay in finite time, this has consequences to the measured mass

Relativistic wave equation

The relativistic version of SchrΓΆdinger's equation is the Klein-Gordon equation