We can use our Fourier transform algorithm to estimate the phase of an eigenvalue of a unitary matrix

Eigenvalues and Eigenvectors

πŸ’Ό Case: let $A$ be an $m\times m$ matrix where $A_{ij}\in \mathbb C$


πŸ’Ό Case: lets look at spectral decomposition

Diagonalisation of Linear Maps

πŸ’Ό Case: consider a diagonalisable linear map $L:\mathbb C^n \to \mathbb C^n$


🧠 Remember: a linear map is a function $L$ between two spaces such that for any $\vec u,\vec v,\alpha$ we have

$$ L(\vec u+\vec v)=L(\vec u)+L(\vec v) \qquad L(\alpha \vec u )=\alpha L(\vec u) $$

πŸ—’οΈ Note: we can represent linear maps as matrices (relation to above) $L(\vec x)\leftrightarrow A\vec x$


πŸ€– Algorithm: the following algorithm will diagonalise the linear map $L$ defined above

  1. We find all the eigenvalues $\lambda_{1},\ldots ,\lambda_k$ where $1\le k \le n$ of A

    πŸ—’οΈ Note: some $\lambda$ might be degenerate ie $\lambda_i=\lambda_j$ where $j\ne i$, which is why we defined $k$ not necessarily equal to $n$ (number of dimensions)

    • We need so specify the multiplicity $n_j \in \N$ of each $\lambda_j$ such that $\sum^k_{j=1}n_j=n$
  2. For each eigenvalue of $\lambda_j$ we find $n_j$ orthonormal eigenvectors $\ket{v_{j,m}}$ where $1\le m\le n_j$

πŸ’Ž Conclusion: the eigenvectors will form an orthonormal basis where $L$ is diagonal


πŸ’Ό Case: we have a quantum operator $U$ that acts on $l\in \N$ qubits with eigenvalue $e^{2\pi i \phi~}$ associated with the eigenvector $\ket{u}$

🧽 Assume: we don’t know $U$, $\phi$ or $\ket{u}$ and $\phi$ can be expressed by exactly $t$ qubits