Guessing results

๐Ÿ’ผ Case: Consider an indeterminate distribution of charges at a distance $\vec r$ from where we measure, with $\vec r'$ being the distance from the origin to the volume $\delta \tau '$ inside the charge distribution and $\vec R = \vec r - \vec r'$

image.png

image.png

๐Ÿ’ผ Case: The same system with $Q=0$ overall but positive and negative charge distributions do not perfectly cancel one another

$$ V=\frac{1}{4\pi \epsilon_0} \underbrace{\times\frac{qa}{r^2}}_\text{"dipole" term} $$

image.png

๐Ÿ’ผ Case: this time there is no dipole, $Q=0$ but the charges don't cancel one another

$$ V=\frac{1}{4\pi \epsilon_0} \underbrace{\times \frac{q a^2}{r^3}}_\text{"quadrupole" term} $$

Analytical solutions

Dipole term

Special case

๐Ÿ’ผ Case: Consider a point charge $q$ at a position $\vec a$ (ie not at the origin) where $a\ll r$

$$ \begin{aligned} V(\vec r) &= \frac{q}{4\pi \epsilon_0} \frac{1}{|\vec r - \vec a|} =\frac{q}{4\pi \epsilon_0} \underbrace{\frac{1}{(r^2 +a^2-2ra\cos\alpha)^\frac 12}}_\text{cosine rule} \\ &\approx \frac{q}{4\pi \epsilon_0 }\frac{1}{r} \left ( 1-2\frac{a}{r}\cos\alpha \right )^{-\frac 12} \qquad \leftarrow \text{where we used }a\ll r\\ &\approx \frac{q}{4\pi \epsilon_0} \left ( \frac{1}{r}+\frac{a\cos\alpha}{r^2} +\ldots \right ) \quad \; \,\leftarrow \text{taylor expansion around }2\frac{a}{r}\cos\alpha\to 0

\end{aligned} $$

Monopole term $\frac 1r$ the dipole and higher terms $\frac{a\cos\alpha}{r^2} +\ldots$ due to the charge not being cantered