<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/b2bba352-508e-4003-8bcd-2e8e091210aa/Valence_(free)_electrons.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/b2bba352-508e-4003-8bcd-2e8e091210aa/Valence_(free)_electrons.png" width="40px" /> Valence (free) electrons: are electrons of atoms participating in bonding, the outer shell
</aside>
🗒️ Note: the motion of valence electrons in a solid is quantum mechanical in nature
💼 Case: consider a many electron system is a solid, steps to solving
🗒️ Notes:
Since Schrödinger's equation is too complicated for multiple electrons we have multiple models:
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/0f81c762-e16a-4f8a-9c8f-5cfd9f0c3eee/Free_Electron_Model.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/0f81c762-e16a-4f8a-9c8f-5cfd9f0c3eee/Free_Electron_Model.png" width="40px" /> Free Electron Model (FEM): for simple metals (outer shell $s$ or $p$ orbitals) we assume:
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/aaa276fc-d4b8-4f54-b09c-b1037807128f/Nearly_Free_Electron_Model.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/aaa276fc-d4b8-4f54-b09c-b1037807128f/Nearly_Free_Electron_Model.png" width="40px" /> Nearly Free Electron Model (NFEM): assumes FEM, except includes weak interactions between electrons and atomic cores
</aside>
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/61f8dcc4-fcad-4f0f-ac49-8c155461100b/Tight-Binding_Model.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/61f8dcc4-fcad-4f0f-ac49-8c155461100b/Tight-Binding_Model.png" width="40px" /> Tight-Binding Model (TBM): for graphene (for example) we assume:
🗒️ Note: the “🧽 Assume:” marker will be used to describe both assumptions and approximations
Start with the electron-in-a-box model applied to 3D with a potential well
$$ V(x,y,z)=\left \{ \begin{matrix} 0 & \text{if} \; 0\le x,y,z\le L\\ \infin & \text{otherwise} \end{matrix} \right . $$
We solve the TISE, within $V=0$ using conditions $\psi=0$ when $x=\{0,L\}$
$$ \psi_{n_x,n_y,n_z}(x,y,z)=\left ( \frac{2}{L} \right )^\frac 32 \sin \left ( \frac{n_x\pi x}{L}\right )\sin \left ( \frac{n_y\pi y}{L}\right )\sin \left ( \frac{n_z\pi z}{L}\right ) $$
where $n_x,n_y,n_z\in \N^*$ and the wave number is given by
$$ k_x=\frac{n_x\pi}{L}\qquad k_y=\frac{n_y\pi}{L} \qquad k_z=\frac{n_z\pi}{L} $$