⚽ Goal: represent classical Gauge transformation in quantum form

Unitary gauge transformations

Our Hamiltonian we see it depends on $\Phi(\vec r,t)$ and $\vec A(\vec r,t)$ directly.

πŸ’Ž Conclusion: The Hamiltonian is not a gauge invariant operator


πŸ’Ό Case: lets try to define a unitary transformation operator that applies the gauge transformations

We now try to transformation the time-dependent Schrodinger equation to see how it is affected

  1. Lets look at the left hand side, for that we can do the following

    $$ \begin{aligned} \frac{\partial}{\partial t} \hat{G}\lambda |\psi\rangle &= \frac{i q}{\hbar} \frac{\partial \lambda (\hat{\vec{r}}, t)}{\partial t} \hat{G}\lambda |\psi\rangle + \hat{G}\lambda \frac{\partial}{\partial t} |\psi\rangle \\ \Rightarrow \qquad \hat{G}\lambda \frac{\partial}{\partial t} |\psi\rangle &= \frac{\partial}{\partial t} \hat{G}\lambda |\psi\rangle - \frac{i q}{\hbar} \frac{\partial \lambda (\hat{\vec{r}}, t)}{\partial t} \hat{G}\lambda |\psi\rangle \end{aligned} $$

  2. Now looking at the right hand side we can expand to get

    $$ \begin{aligned} \hat{G}\lambda \hat{H} \hat{G}\lambda^\dagger &= \frac{1}{2m} \hat{G}\lambda \left[ \hat{\vec{p}} - q \mathbf{A} (\hat{\vec{r}}, t) \right]^2 \hat{G}\lambda^\dagger + q \hat{G}\lambda \Phi (\hat{\vec{r}}, t) \hat{G}\lambda^\dagger \\ &= \frac{1}{2m} \hat{G}\lambda \left[ \hat{\vec{p}} - q \vec{A} (\hat{\vec{r}}, t) \right] \hat{G}\lambda^\dagger \hat{G}\lambda \left[ \hat{\vec{p}} - q \vec{A} (\hat{\vec{r}}, t) \right] \hat{G}\lambda^\dagger + q \Phi (\hat{\vec{r}}, t) \\ &= \frac{1}{2m} \left[ \hat{\vec{p}} - q \left( \mathbf{A} (\hat{\vec{r}}, t) + \boldsymbol{\nabla} \lambda (\hat{\vec{r}}, t) \right) \right]^2 + q \Phi (\hat{\vec{r}}, t) \end{aligned} $$

πŸ’Ž Conclusion: The Schrodinger equation has the same form in any gauge chosen

Physical significance

The matrix elements $\bra{\phi}\hat O \ket{\psi}$ and the expectation value are gauge invariant