<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/fcc19a4b-e306-43b7-9cce-053176d4c1b9/discrete_dynamical.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/fcc19a4b-e306-43b7-9cce-053176d4c1b9/discrete_dynamical.png" width="40px" />
A discrete dynamical system is defined by by an iterative rule
$$ x_{n+1}=f(x_n) $$
</aside>
💃 Example: the iterative map of $x_{n+1}=\cos(x_n)$ for all $x_0$
The blue dots are $x_0$ note that they are on a different scale then the rest, they follow $-\pi$ to $\pi$ when the rest goes from $-1$ to $1$
This is a one dimensional map, because line figure, all the points can be represented in one dimensions, here going from -1 to 1 and we see it converges at $x^$ defined $x^=\cos(x^*)$
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/b962609c-ce90-4045-8848-28e506e0fd8c/Orbit_map.gif" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/b962609c-ce90-4045-8848-28e506e0fd8c/Orbit_map.gif" width="40px" />
Orbit map: set of values $x_0,x_1,x_2,\ldots$ starting from an initial value $x_0$ obtain from
$$ x_1=f(x_0) \quad x_2=f(x_1) \quad \ldots \quad x_N=f(x_{N-1}) $$
</aside>
💼 Case: $x_{n+1} =f(x_n)$ where $f$ is a smooth function from the real line to itself
📍 Fixed points: $x^$ is a fixed point if $f(x^)=x^*$
We define $\lambda =f'(x^*)$ which allows us to write
⚖️ Stability analysis:
- $|\lambda |<1$ fixed point is stable
- $|\lambda |>1$ fixed point is unstable
- $|\lambda |=1$ is inconclusive higher derivatives need to be considered
🪧 Setup:
🪚 Use:
Repeat to get to any higher $n$ point $x_n$
🗒️ Note: its basically a fancy lookup table, they are used to see global behaviour at a glance
💃 Example: Logistic map $x_{n+1}=\cos(x_n)$ shown above
Solve to fin $x^*$
$$ \cos(x)=x \quad \Rightarrow \quad x\simeq 0.739 $$
Calculate its derivative
$$ \begin{aligned} (\cos(x^))'&=-\sin(x^)\simeq - 0.674 \\ \Rightarrow \; |\lambda |&=|f'(x^*)|=0.674<1 \end{aligned} $$
🗒️ Note: if there are multiple $x^*$ you need to analyse each individually
💃 Example: consider the logistic map $x_{n+1}=\frac 12 x^3_n + \frac 12 x_n$
Find the fixed points
$$ \begin{aligned} \frac 12 x^{3}+\frac 12 x^{}&=x^* \\ \Rightarrow \quad x^*&=0,\pm 1 \end{aligned} $$
Calculate the derivative and apply the solutions
$$ f'(x^*)=\frac 32 x^{*2} + \frac 12 \quad \Rightarrow \quad |\lambda_0|=|f'(0)|=\frac 12 <1 \quad |\lambda_{\pm 1}|=|f'(\pm 1)|=2>1 $$