⚠️ Disclaimer: diffraction and interference will be used interchangeably

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/0441900f-f595-4b59-84d7-44b92289d6c3/Fourier_series.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/0441900f-f595-4b59-84d7-44b92289d6c3/Fourier_series.png" width="40px" /> Fourier series: using the orthogonal basis function $\sin$ and $\cos$ we can make any function in the range $x=-L$ to $x=L$ (or periodic function with period $2L$) using the series

$$ f(x)=a_0+ \sum_n a_n \sin \left (\frac{n\pi x}{L} \right ) + b_n \cos\left ( \frac{n\pi x}{L} \right ) $$

where

$$ \begin{aligned} a_0&=\frac{1}{2L}\int^L_{-L}f(x)\,\text dx \\ a_n&=\frac{1}{L}\int^L_{-L}f(x)\sin\left ( \frac{n \pi x}{L} \right )\,\text dx \\ b_n&=\frac{1}{L}\int^L_{-L}f(x)\cos\left ( \frac{n \pi x}{L} \right )\,\text dx \end{aligned}

$$

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/202bf7c1-5420-4baf-abcc-dac8c46ff85a/Orthogonal.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/202bf7c1-5420-4baf-abcc-dac8c46ff85a/Orthogonal.png" width="40px" /> Orthogonal: two function $f(x)$ and $g(x)$ are orthogonal if

$$ \int^L_{-L}f^*(x)g(x)\,\text dx=0 $$

</aside>

🗒️ Notes:

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/ff231438-958c-440a-a074-a86ae717e3f4/Fourier_transforms.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/ff231438-958c-440a-a074-a86ae717e3f4/Fourier_transforms.png" width="40px" /> Fourier transforms: if we take the limit of the Fourier series as $L\to\infin$ we get

$$ f(x)=\frac{1}{2\pi} \int^\infin_{-\infin}F(\xi)e^{i\xi x}\,\text dx \qquad F(\xi)=\int^\infin_{-\infin} f(x)e^{-i\xi x}\,\text dx $$

</aside>

🗒️ Notes:

Fraunhofer (far field) diffraction

🗒️ Note: in this section will assume large distance

💼 Case: consider a single slit plane where we define the axis such that the slit is at $-a/2<x<a/2$

$$ \begin{aligned} E_\text{tot} &=(E_0\,\text dx/a)e^{i(kz-\omega t)}(e^{-\frac{ika\sin\theta}2}+\ldots +e^{\frac{ika\sin\theta}2})\\ &=(E_0/a)e^{i(kz-\omega t)} \int^{a/2}_{-a/2}e^{-ikx\sin\theta}\,\text dx \end{aligned} $$

Untitled

🗒️ Note: to get this answer we assumed the following:

Repeating the same process with phasors:

Untitled