<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/138b19e2-101c-4e4f-a218-2a25f2d63cd4/Interference.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/138b19e2-101c-4e4f-a218-2a25f2d63cd4/Interference.png" width="40px" /> Interference: Combination of a finite number of waves (Young’s slits)

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/cfe5b7ad-b05c-4590-af5e-88bfd25fa065/Diffraction.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/cfe5b7ad-b05c-4590-af5e-88bfd25fa065/Diffraction.png" width="40px" /> Diffraction: combination of an infinite number of wave (wide aperture)

</aside>

🗒️ Note: these 2 concepts are related for both:

Adding waves

The $\cos$ term is called the interference term, for it to exist

💎 Conclusion: if these conditions are fulfilled (coherence), then we add waves $E^*E$ otherwise we add intensities

💼 Case: if we assume the frequencies are the same we can do 2 simplifications

  1. Write all of the subscripts in the exponentials as a simple phase:

    $$ \begin{aligned} E^*E &=(A_1e^{-i\epsilon_1}+A_2 e^{-i\epsilon_2})(A_1e^{i\epsilon_1}+A_2 e^{i\epsilon_2}) \\&=|A_1|^2+|A_2|^2+2A_1A_2\cos(\epsilon_1-\epsilon_2)

    \end{aligned} $$

  2. Regard waves as phasors (amplitude complex plane):

    🗒️Note: this can be shown using geometry

Untitled

Coherence

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/cef85ac3-2aca-4fb9-aae3-670b4c7dff63/Temporal_coherence.gif" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/cef85ac3-2aca-4fb9-aae3-670b4c7dff63/Temporal_coherence.gif" width="40px" /> Temporal coherence: the measure of the average correlation of the phase of the light wave along the propagation direction.

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/1957bd57-cfdd-4eb5-a467-45a5923c630c/Temporal_coherence_time.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/1957bd57-cfdd-4eb5-a467-45a5923c630c/Temporal_coherence_time.png" width="40px" /> Temporal coherence time: $t_c=1/\Delta \upsilon$. If $t>t_c$ interference will not be observed between a wave and its delayed version. The corresponding coherence length is $ct_c$

</aside>

🗒️ Note: the fixed points are due to the slider changing by 0.05 increments, they are a consequence of the graph not of real life

🗒️ Note: the fixed points are due to the slider changing by 0.05 increments, they are a consequence of the graph not of real life

🚷 Why is coherence unlikely

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/95e4bf9f-e4e7-452f-80b7-385f48dd3b56/Spatial_coherence.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/95e4bf9f-e4e7-452f-80b7-385f48dd3b56/Spatial_coherence.png" width="40px" /> Spatial coherence: measure of the phase difference, $\phi$, between each point of a wavefront (small $\Delta \phi$ = large spatial coherence)

</aside>