💼 Case: lets try to find the probability density using the Dirac equation
Starting from the Dirac equation
$$
i\hbar \frac{\partial \psi}{\partial t} =-i\hbar c\vec \alpha\cdot \vec \nabla \psi + \beta mc^2 \psi
$$
Multiplying from the left by $\psi^\dag$ gives
$$
i\hbar \psi ^ \dag\frac{\partial \psi}{\partial t} =-i\hbar c\psi ^ \dag\, \vec \alpha\cdot \vec \nabla \psi + mc^2 \psi ^\dag \beta\psi
$$
🗒️ Note: here we used $\psi^\dag$ rather than $\psi ^*$ because our wave-function is a vector not a scalar
We can build the adjoint matrix and multiplying by $\psi$ from the right gives
$$
-i\hbar \frac{\partial \psi^ \dag}{\partial t}\psi =i\hbar c \vec \nabla \cdot ( \psi ^ \dag\vec \alpha) \psi + mc^2 \psi ^\dag \beta\psi
$$
where $\vec \alpha$ and $\beta$ are Hermitian and thus are not affected
Subtracting our previous and current expression gives
$$ i\hbar \frac{\partial}{\partial t} ( \psi ^ \dag \psi ) = -i\hbar c \vec \nabla \cdot (\psi^\dag \vec \alpha \psi) $$
which we recognise as
$$ \frac{\partial \rho}{\partial t} +\vec \nabla \cdot \vec j =0 $$
So the probability density and the current are
$$ \rho = \psi ^ \dag \psi \qquad \vec j =\psi ^ \dag \psi $$
⚽ Goal: lets try and determine wether the orbital angular momentum is conserved
The orbital angular momentum operator is defined as
$$ \hat {\vec L } =\hat{\vec r} \times \hat{\vec p} \qquad \Leftrightarrow \qquad \hat L_i =\sum_{jk}\epsilon_{ijk}\hat r_j \hat p_k $$
Where our goal is to find
$$ [\hat H, \hat{\vec L}]=[v\vec \alpha \cdot \vec p +\beta mc^2 ,\hat{\vec L}]=? $$
Calculating it directly we get
$$ [\hat H , \hat{\vec L}]=-i\hbar c\vec \alpha \times \hat{\vec p} $$
💎 Conclusion: The orbital angular momentum is not conserved
We expect the total angular momentum to be conserved so lets introduce the spin
$$ \vec \Sigma =\begin{bmatrix} \vec \sigma & 0 \\ 0 & \vec \sigma \end{bmatrix} \qquad \Leftrightarrow \qquad \Sigma _i=\begin{bmatrix} \sigma_i & 0 \\ 0 & \sigma_i \end{bmatrix} \quad \text{for} \;i\in \{1,2,3\} $$
where $\vec \sigma$ are the Pauli matrices
Calculating its commutation relation we have
$$ [\alpha_i , \Sigma _j]=2i \sum k \epsilon{ijk} \alpha_k \quad "+" \quad [\beta ,\Sigma_j]=0 \quad "\Rightarrow" \quad [\hat H,\vec \Sigma ]=2ic\,\vec \alpha \times \hat{\vec p} $$
Hence by considering the total angular momentum, $\hat{\vec J} =\hat{\vec L}+\frac{\hbar}{2}\vec \Sigma \equiv \hat {\vec L} +\hat {\vec S}$ we write
$$ [\hat H ,\hat {\vec L}+\hat{\vec S} ]=0 $$
💎 Conclusion: The total angular momentum is conserved and the spin operator is $\hat {\vec S}=\frac{\hbar}{2}\vec \Sigma$
Taking a closer look at the Spin operator we have
⚽ Goal: find the solution to the free particle Dirac equation
Lets use as our Ansatz the following plane wave
$$ \psi ( \vec r,t)=Nu(\vec p) e^{i(\vec p \cdot \vec r - Et)/\hbar} =Nu(\vec p ) e^{-ip^\mu r_\mu /\hbar} $$
where $N$ is some normalisation and $u(\vec p )$ is a four-component spinor
We can express $u(\vec p )$ as follows
$$ u(\vec p ) =\begin{pmatrix} \phi \\ \chi \end{pmatrix} $$
where $\phi$ and $\chi$ are known as the upper and lower components of the wave functions