Wave equations in free space ($q=0, \vec J=0$)

$$ \vec \nabla \times \vec E=-\frac{\partial \vec B}{\partial t} \quad \vec \nabla \times \vec B = \mu_0 \epsilon_0 \frac{\partial \vec E}{\partial t} \quad \vec \nabla \cdot \vec E=0 \quad \vec \nabla \cdot \vec B = 0 $$

Simple solution

$$ \vec E=\vec E_0 e^{i(\vec k \cdot \vec r-\omega t)} $$

Similarly $\vec B=\vec B_0 e^{i(\vec k \cdot \vec r-\omega t)}$, here $\vec k$ is the wavevector

$$ \vec k=(k_x,k_y,k_z)=\left ( \frac{2\pi}{\lambda_x},\frac{2\pi}{\lambda_y},\frac{2\pi}{\lambda_z} \right ) $$

Properties:

💼 Case: consider a general magnetic field:

$$ \vec B=(B_x,B_y,B_z)=e^{-i\omega t} (B_{0x}e^{i\vec k \cdot \vec r},B_{0y}e^{i\vec k \cdot \vec r},B_{0z}e^{i\vec k \cdot \vec r}) $$

Energy in waves

Poynting vector:

$$ \vec S= \frac{1}{\mu_0} \vec E \times \vec B $$

💼 Case: for plane wave $\vec E=\vec E_0 \cos(\vec k \cdot \vec r-\omega t)$, $\vec B=\vec B_0 \cos(\vec k \cdot \vec r-\omega t)$

$$ \vec S= \frac{\vec E_0 \times \vec B_0}{\mu_0 } \cos^2(\vec k \cdot \vec r-\omega t) $$

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/e4e92d3c-f07f-4404-bfe4-728672b7acc0/Irradiance.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/e4e92d3c-f07f-4404-bfe4-728672b7acc0/Irradiance.png" width="40px" /> Irradiance ( or intensity): $I$ is defined as the energy in a wave crossing unit area per unit volume, averaged over many $1/f$ intervals. It is proportional to the square of the electric field amplitude

</aside>