Starting from the inhomogeneous Maxwell equations
$$ \vec E=-\vec \nabla V-\frac{\partial \vec A}{\partial t} \qquad \text{and} \qquad \vec B =\vec \nabla \times \vec A $$
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/52e2be64-5cf5-4f09-8514-5867fc2b1455/Lorenz_gauge.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/52e2be64-5cf5-4f09-8514-5867fc2b1455/Lorenz_gauge.png" width="40px" />
Lorenz gauge:
$$ \boxed{\mu_0 \epsilon_0 \frac{\partial V}{\partial t} + \vec \nabla \cdot \vec A =0} $$
</aside>
⚡ Inhomogeneous wave equation for $V$
$$ \vec \nabla \cdot \vec E=- \nabla^2 V - \frac{\partial }{\partial t} ( \vec \nabla \cdot \vec A)=\frac{\rho}{\epsilon_0} $$
🧲 Inhomogeneous wave equation for $\vec A$
$$ \vec \nabla \times \vec B = \mu_0 \vec j + \mu_0 \epsilon_0 \frac{\partial \vec E}{\partial t} $$
$$ \begin{aligned} \vec \nabla \times \vec B = \mu_0 \vec j + \mu_0 \epsilon_0 \left [ -\vec \nabla\frac{\partial V}{\partial t}-\frac{\partial ^2 \vec A}{\partial t^2} \right ] \end{aligned} $$
$$ \begin{aligned} \vec \nabla \times \vec B &=\vec \nabla \times (\vec \nabla \times \vec A) \\ &=\vec \nabla ( \vec \nabla \cdot \vec A)-\nabla^2 \vec A \end{aligned} $$
$$ \begin{aligned} \footnotesize{\mu_0\epsilon_0 \frac{\partial ^2 \vec A}{\partial t^2} - \nabla^2 \vec A + \nabla (\mu_0 \epsilon_0 \frac{\partial V}{\partial t} + \vec \nabla \cdot \vec A)=\mu_0 j} \end{aligned} $$
Applying the Lorenz gauge to both sides we get
$$ \boxed{\mu_0 \epsilon_0 \frac{\partial^2 V}{\partial t^2}-\nabla^2 V=\frac{\rho}{\epsilon_0}} \qquad \qquad \boxed{\mu_0 \epsilon_0 \frac{\partial^2 \vec A}{\partial t^2}-\nabla^2 \vec A=\mu_0 \vec j} $$
🗒️ note: since $\epsilon_0 \mu_0 = \frac{1}{c^2}$ the potentials (and fields) propagate at the speed of light
For convenience we define the D’Alambertian
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/90a376fc-e9f9-4aaa-b2bb-38ab51c51fd7/DAlambertian.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/90a376fc-e9f9-4aaa-b2bb-38ab51c51fd7/DAlambertian.png" width="40px" />
D’Alambertian:
$$ \square ^2 \equiv \frac{1}{c^2} \frac{\partial ^2 }{\partial t^2} -\nabla^2 $$
</aside>
We can now re-write the wave equations as
$$ \square ^2 V=\frac{\rho}{\epsilon_0} \qquad \qquad \square ^2 \vec A= \mu_0 \vec j $$
🗒️ Notes:
💼 Case: Similar setup to before except this time we need to define the time at which we are determining the field
We take into account time-varying $\rho$, $\vec j$
Thus we take into consideration the time delay as the EM waves travel from $\delta t'$ to $P(\vec r,t)$
$$ t_\text{ret}=t-\frac{r}{c} $$
$t_\text{ret}$ is the retarded time