Example of a relativistic kinematics - Compton scattering

🗒️ Note: we work with $c=1$ such that $E_\gamma = p_\gamma$

image.png

Before

image.png

$$ \begin{aligned} \tilde p_\gamma &= (p_\gamma, p_\gamma,0,0) \\ \tilde p _e &= (m,0,0,0) \end{aligned} $$

Because the electron is initially at rest and the collision is along the $x^1$ axis

🗒️ Note: $\gamma$ means photon here

After

Screenshot 2024-12-12 122017.png

$$ \begin{aligned} \tilde p'\gamma & = (p'\gamma, \vec p'_\gamma )\\ \tilde p_e'&= (E'_e, \vec p'_e)

\end{aligned} $$


⚽ Goal: work out $p_\gamma '$ as a function of $\theta$

$$ \begin{align*} \tilde{p}\gamma + \tilde{p}e &= \tilde p\gamma' + \tilde p_e' \\[10pt] (\tilde{p}e)^2 &= \left( \tilde{p}\gamma + p_e - p\gamma' \right)^2 =m^2\\[5pt] &= \tilde{p}\gamma^2 + \tilde p_e^2 + \tilde p\gamma'^2 + 2 \left( \tilde{p}\gamma \cdot \tilde p_e - \tilde{p}\gamma \cdot p_\gamma' - \tilde p_e \cdot \tilde p_\gamma' \right) \\[10pt] m^2 &= 0 + m^2 + 0 + 2 \left( p_\gamma m - \left[ p_\gamma p_\gamma' - \vec p_\gamma \cdot \vec p_\gamma' \right] - m p_\gamma' \right) \\[10pt] p_\gamma^m &= p_\gamma' \left[ p_\gamma (1 - \cos \theta) + m \right] \end{align*} $$

We get the Compton scattering formula

$$ \boxed{\frac{p_\gamma'}{p_\gamma}=\frac{m}{p_\gamma [1-\cos+m]}} $$

Thomson scattering - example of the use of Larmor formula

💼 Case:


🧠 Remember: in radiation fields we found $|B|=|E|/c$ therefore

$$ \vec F=q(\vec E + \underbrace{\vec v \times \vec B}_{\vec B \propto \frac 1c \;\& \; v\ll c} )\sim q \vec E $$