💼 Case: square lattice, single atom unit cell with atomic orbital $\phi(\vec r)$ of isolated orbital energy $E_0$, were we assume tunnelling occurs only between nearest neighbours with amplitude $-t$
The square lattice is generated by two vectors $\vec a_1=a(1,0)$ and $\vec a_2 =a(0,1)$
Each atom connected to neighbours by vectors $\pm \vec a_1,\pm \vec a_2$
We label unit cell using $l_x,l_y$ for columns and rows respectively. Where $l_x=0,1,\ldots,N_x-1$, $l_y=0,1,\ldots,N_y-1$, $N_xN_y=N$ and $N$ is the total number of unit cells
🗒️ Note: Assume periodic boundary conditions.
Hopping around $(l_x,l_y)$ can be to $(l_x\pm 1,l_y)$ and $(l_x,l_y \pm 1)$
We can write the tight binding wave function
$$ \psi_{\vec k} (\vec r)=\frac{1}{\sqrt{N}} \sum^{N_x-1}{l_x=0} \sum^{N_y-1}{l_y=0}c_{l_x,l_y}\phi(\vec r- \vec r_{l_x,l_y}) $$
Since the position of $(l_x,l_y)$ is $\vec r_{l_x,l_y}=l_x\vec a_1+l_y\vec a_2=(l_xa,l_ya)$ equation for $E$ becomes
$$ (E_0-E)c_{l_x,l_y}-t(c_{l_x+1,l_y}+c_{l_x-1,l_y}+c_{l_x,l_y+1} +c_{l_x,l_y-1})=0 $$
where we sub in $c_{l_x,l_y}=\tilde c_{\vec k}e^{i\vec k \cdot \vec r_{l_x,l_y}}$ where $\vec k =(k_x,k_y)$ is a $\rm 2D$ vector we get
$$ \begin{aligned} &\;E_{\vec k}=E_0 -t(e^{ik_x a}+e^{-ik_x a}+e^{ik_y a}+e^{-ik_y a}) \\ &\boxed{E_{\vec k}=E_0-2t[\cos(k_xa)+\cos(k_ya)]} \end{aligned} $$
💎 Conclusion:
We can find $k_x$ and $k_y$ by applying the boundary condition $c_{N_x,l_y}=c_{0,l_y}$ and $c_{l_x,N_y}=c_{l_x,0}$
$$ \left \{ \begin{aligned} e^{ik_xN_xa} =1 \\ e^{ik_y N_y a}=1 \end{aligned}\right. \qquad \Rightarrow \qquad \left \{ \begin{aligned} k_x=\frac{2\pi n_x}{N_x a} \quad n_x=0,1,\ldots,N_x-1 \\ k_y=\frac{2\pi n_y}{N_y a} \quad n_y=0,1,\ldots , N_y-1
\end{aligned} \right . $$
Therefore in the Brillouin zone the number of wave vector $\vec k$ is $N_x\times N_y = N$
💎 Conclusion:
(left) plot of $E_k$
🗒️ Note: four corners correspond to a single $\vec k$ point due to the periodicity in $\vec k$ space
💎 Conclusion: total bandwidth: $\Delta E\equiv E_{\vec k \text{max}}-E{\vec k _\text{min}}=8t$
(right) plot of band structures
🗒️ Note:
$\Gamma,X,M$ are common names for the minimum, side and corner respectively
The symmetry of crystal allows us to know the value of other points (ie 90 degree rotations)
Expand to see symmetries