<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/55822734-cfa1-4e4e-b3dc-c5f6325ab74e/Heat_capacity.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/55822734-cfa1-4e4e-b3dc-c5f6325ab74e/Heat_capacity.png" width="40px" /> Heat capacity: how much temperature $\Delta T\to0$ raised after absorbing $\Delta Q$ heat

$$ C=\frac{\text d Q}{\text dT} $$

Untitled

it can take units $\rm J \, K^{-1} \, kg^{-1}$ or $\rm J \, K^{-1} \, Mol^{-1}$

</aside>

๐Ÿ—’๏ธ Notes:

Classical model

๐Ÿ’ผ Case: Consider $3$ atoms in a $1D$ chain, there is a restoring force returning it to its equilibrium here weโ€™re imagining springs

๐Ÿงฝ Assume: only nearest neighbour interactions and the spring constant $K$ is the restoring force in all $xyz$ directions

Untitled

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/54b6bc6c-6bf9-408f-b94f-ee0207ba84a9/Equipartition_principle.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/54b6bc6c-6bf9-408f-b94f-ee0207ba84a9/Equipartition_principle.png" width="40px" /> Equipartition principle: The average energy in each accessible degree of freedom of a system in thermal equilibrium is $k_B T/2$

</aside>

๐Ÿ—’๏ธ Notes:

Quantum Model: the Einstein Model

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/fb173472-056a-49f0-9d7e-1750909b8e12/Einstein_model.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/fb173472-056a-49f0-9d7e-1750909b8e12/Einstein_model.png" width="40px" /> Einstein model: The quantum model assumes the atoms are vibrating independently as a QM SHO in each direction $x,y,z$

</aside>

๐Ÿ—’๏ธ Note: we use a statistical approach valid for large numbers to explain macroscopic properties