Real gas

Ideal gas

Real gases behave like ideal gases at 🔥 High temperatures or 🪣 Low pressures

Ideal gas law

$$ \underbrace{P}{\text{Pressure in Pa}}\times\overbrace{V}^{\text{Volume in m}^3}=\underbrace{n}{\text{nb. of molecules in mol}}\times \overbrace{R}^{\text{Constant }8.31\,\text{s.i.} }\times \underbrace{T}_\text{Temperature in K} $$

<aside> <img src="https://em-content.zobj.net/source/microsoft-teams/337/moai_1f5ff.png" alt="https://em-content.zobj.net/source/microsoft-teams/337/moai_1f5ff.png" width="40px" /> Intensive variables: are non additive their value is not proportional to the amount of substance

Extensive variables: are additive their value is linearly proportional to the amount of substance

</aside>

First law of thermodynamics

$$ \underbrace{\Delta E}\text{Change in internal energy}=\underbrace{W}\text{Work done on system}+\underbrace{Q}_\text{Heat supplied to system} $$

Reversible processes

$$ \newcommand{\dbar}{\text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em}} \text{d}E=\dbar Q+\dbar W $$

For a process to be reversible:

Work done

$$ \text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em}W=\vec F \cdot \text d \vec x=\underbrace{\frac{|\vec F|}{A}}{P}\underbrace{A \, \text dx}{-\text dV}=-Pd\text V $$

Example: The tension $\Gamma$ in an elastic string stretched to a length $L$ at a temperature $T$ is

$$ \Gamma=KT\left(\frac{L}{L_0}-\frac{L_0^2}{L^2}\right) $$

Calculate the work done on the string when it is stretched reversibly and isothermally.