<aside> <img src="attachment:2bdd1692-42e8-4727-a5f4-5cfd37082b06:noethers_theorem.png" alt="attachment:2bdd1692-42e8-4727-a5f4-5cfd37082b06:noethers_theorem.png" width="40px" />

Noether’s theorem: If the Lagrangian or the equation of motion is symmetric under a given transformation then there will be a conserved quantity associated with this symmetry

</aside>

πŸ’ƒ Example: translational symmetry

πŸ’Ž Conclusion: linear momentum is conserved!

πŸ—’οΈ Note: the actual expression is $\hat D=\exp (i \vec a\cdot\vec p)$ where $\vec a$ is the displacement

Space-time symmetries

Symmetry Conservation Law
Translation in space Momentum
Translation in time Energy
Rotation in space Angular momentum

🧠 Remember: Angular momentum operators

<aside> <img src="attachment:d87119bd-6def-48c0-9b1e-d768e0d4f932:orbital_angular_momentum.png" alt="attachment:d87119bd-6def-48c0-9b1e-d768e0d4f932:orbital_angular_momentum.png" width="40px" />

Orbital angular momentum:

$$ \begin{aligned} \text{Operator:}& &\quad \hat{\bold L} &=(\hat L_x,\hat L_y,\hat L_z) \qquad \hat{\bold L}=\hat{\bold r} \times \hat{\bold p} \\ \text{Eigenvalues:}& & \hat{\bold L}^2 \psi(\vec r)&=l(l+1) \psi(\vec x) \qquad\, l\in \N \\ &&\hat L_z \psi(\vec x)&=m_l \psi(\vec x) \qquad \quad \, \, m_l\in[-l,l]\cap \N \\

\end{aligned} $$

</aside>

<aside> <img src="attachment:a70c4abb-24b9-4f11-8763-7f2855f2d845:spin_angular_momentum.png" alt="attachment:a70c4abb-24b9-4f11-8763-7f2855f2d845:spin_angular_momentum.png" width="40px" />

Spin angular momentum:

$$ \begin{aligned} \text{Operator:}&& \quad \hat{\bold S}&=(\hat S_x,\hat S_y , \hat S_z) \\ \text{Eigenvalues:}&& \quad \hat{\bold S}^2 \psi(\vec x)&=s(s+1)\psi(\vec x) \quad s\in \left \{ \tfrac{n}{2}\; | \; n\in \N \right \} \\ &&\hat S_z \psi(\vec x)&=m_s \psi(\vec x) \qquad \; \, m_s\in \{ s,s-1,\ldots ,-s\}

\end{aligned} $$

</aside>

πŸ’ƒ Example: electron is a fermion so $s=\frac 12$ and $m_s\in\{-\frac 12, \frac 12 \}$

Conservation of angular momentum

<aside> <img src="attachment:532ef457-d2a0-4624-82b4-95e618434661:total_angular_momentum.gif" alt="attachment:532ef457-d2a0-4624-82b4-95e618434661:total_angular_momentum.gif" width="40px" />

Total angular moment:

$$ \begin{aligned} \text{Operator:}&& \quad \hat{\bold J}&=\hat{\bold L} + \hat {\bold S} \\ \text{Eigenvalues:}&& \quad \hat{\bold J}^2 \psi(\vec x)&=j(j+1)\psi(\vec x) \quad j\in \N \\ &&\hat J_z \psi(\vec x)&=m_j \psi(\vec x) \qquad \; \, m_j\in [-j,j]\cap \N

\end{aligned} $$

</aside>

Parity