$$ \begin{aligned} \vec\nabla=\vec e_i\frac{\partial}{\partial r_i} \quad &; \quad \text{Div}=\vec\nabla \cdot \vec v=\text{scalar} \\ \text{Grad}=\vec\nabla U=\text{vector} \quad &;\quad \text{Curl}=\vec\nabla \times\vec v=\text{vector} \end{aligned} $$
Conservative force fields can be generated by a potential
Condition for conservative field $\vec\nabla \times \vec F=0$
Central force fields $\vec F=f(r)\,\hat r$
$$ \vec \nabla g(r)=\frac{\partial g}{\partial r}\,\hat r $$
Gravitational field strength $\vec g(\vec r)=\frac 1m \vec F$ and gravitational potential $\Phi=\frac 1m U$
Gravitational potential
$$ \text d \Phi(\vec r)=-G_N \frac{\text dM(r')}{|\vec r-\vec r'|} $$
🚓 Motion for central potentials
$$ E=\frac 12 \mu \dot r^2+U_\text{eff}(r)=\frac 12 \mu \dot r^2+ U(r)+\frac{L^2}{2\mu r^2} $$
General solution for $U=-\alpha/r$ is
$$ r=\frac{r_0}{1+\epsilon\cos(\theta)} $$
where $r_0$ and $\epsilon$ are related to $E$ and $L$ and the solutions leads to the following
Circle | Ellipse | Parabola | Hyperbola |
---|---|---|---|
$\epsilon=0$ | $0<\epsilon<1$ | $\epsilon=1$ | $\epsilon >1$ |
⛰️ Stationary points
In general cases sketch the effective potential $U_\text{eff}(r)$ in region $r>0$ by identifying and classifying the stationary points, crossing points and asymptotes
Stationary points are stable if $\frac{\text d^2 U_\text {eff}}{\text d r^2}>0$ at the stationary point and unstable if it is $<0$