Moment of inertia

Axis theorems

Rotational angular momentum and rotational kinetic energy

$$ \begin{aligned} \begin{pmatrix} L_1 \\ L_2 \\ L_3 \end{pmatrix}&=L_i=I_{ij}\omega_{j}=\begin{bmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{bmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} \\ T&=\frac 12 \omega_i I_{ij} \omega_j = \frac 12 \begin{pmatrix} \omega_1 & \omega_2 & \omega_3 \end{pmatrix}\begin{bmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{bmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} \end{aligned} $$

Diagonalization

Euler’s equation

$$ \vec M=\dot {\vec L}|S=\dot {\vec L}|{S'}+\vec\omega\times\vec L=I\dot\omega+\vec\omega\times(I\vec\omega) \\ \begin{aligned} M_1&=I_1\dot \omega_1+(I_3-I_2)\omega_2\omega_3 \\ M_2&=I_2\dot \omega_2+(I_1-I_3)\omega_3\omega_1 \\ M_3&=I_3\dot \omega_3+(I_2-I_1)\omega_1\omega_2 \end{aligned} $$

Symmetric free top