Moment of inertia is a symmetric tensor. For a continuous distribution
$$ I_{ij}=I_{ji}=\int\text dM(r^2\delta_{ij}-r_ir_j) $$
where $\text dM=\rho \text dV$or $\sigma \text dA$ or $\mu \text d \mathcal l$. For a discrete distribution we get
$$ I_{ij}=\sum^N_{k=1}m_k\left ( |\vec r^{(k)}|^2\delta_{ij}-r_i^{(k)}r_j^{(k)}\right ) $$
$$ \begin{aligned} \begin{pmatrix} L_1 \\ L_2 \\ L_3 \end{pmatrix}&=L_i=I_{ij}\omega_{j}=\begin{bmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{bmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} \\ T&=\frac 12 \omega_i I_{ij} \omega_j = \frac 12 \begin{pmatrix} \omega_1 & \omega_2 & \omega_3 \end{pmatrix}\begin{bmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{bmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} \end{aligned} $$
$$ \vec M=\dot {\vec L}|S=\dot {\vec L}|{S'}+\vec\omega\times\vec L=I\dot\omega+\vec\omega\times(I\vec\omega) \\ \begin{aligned} M_1&=I_1\dot \omega_1+(I_3-I_2)\omega_2\omega_3 \\ M_2&=I_2\dot \omega_2+(I_1-I_3)\omega_3\omega_1 \\ M_3&=I_3\dot \omega_3+(I_2-I_1)\omega_1\omega_2 \end{aligned} $$
symmetric free body $\vec M=0$ with spin frequency $\omega_t$ and $I_3>I$ will precess with frequency
$$ \Omega=\left ( \frac{I_3-I}{I} \right )\omega_t $$
Intermediate axis theorem: If $I_1<I_2<I_3$ then rotations are unstable about the $2^{\text{nd}}$-axis
Heavy spinning tops, or gyroscopes can exhibit fast/slow precession and nutation