Isospin

Isospin symmetry: up and down quarks are indistinguishable to the strong nuclear force

Isospin is a non-physical property of hadrons that is mathematically analogues to spin, ie

✏️ Notation

Spin Isospin
$\bold {\hat L}^2$ $\bold {\hat I}^2$
$L_x$ $\hat I_1$
$L_y$ $\hat I_2$
$L_z$ $\hat I_3$
$m$ $I_3$
$l$ $I$

πŸ“œ Properties

$$ \begin{aligned} \bold {\hat I}^2&=\hat I^2_1+\hat I^2_2+\hat I^2_3 \\ [\hat I_i,\hat I_j]&=i\hbar \epsilon_{ijk} \hat I_k \quad \text{distinct} \; i,j,k\in \{1,2,3 \} \\ [\bold {\hat I}^2, \hat I_i]&=0 \quad \forall i \in\{1,2,3\}\\ \bold {\hat I}^2\ket{I, I_3}&=I(I+1)\hbar^2 \ket{I, I_3} \\ I_3&\in[-I,-I+1,\ldots,I] \end{aligned} $$

$I_3$ has $(2I+1)$ states for each multiplet (same $I$)

πŸ—’οΈ Note: similar to $L_z$ by convention we use $I_3$

πŸ—’οΈ Note: notation is a bit ambiguous because the usual lower case convention doesn’t work for $i$

Quantum numbers

πŸ“– Definition:

⚑ Isospin is conserved in strong and electromagnetic interacts

From the definitions we write

$$ \begin{aligned} \text{Proton}: \;I_3&=+\frac{1}{2} \\ \text{Neutron}: \;I_3&=-\frac{1}{2} \end{aligned} $$

They form a doublet


πŸ’ƒ Example: pions $\pi^+$, $\pi^-$ and $\pi^0$

πŸ’Ž Conclusion: they form an isospin triplet with $I=1$ with multiplicity of $(2I+1)=3$

Hadron Supermultiplets

πŸ“– Definition: Hadrons are divided into baryons and mesons

πŸ—’οΈ Note: $q$ represent arbitrary quark flavour that are not necessarily the same

πŸ’Ό Case: Consider $u,d,s$ the lightest quarks in there ground stay $\vec L=0$ thus $\vec J=\vec L +\vec s=\vec s$

Looking at a baryon with arbitrary quark flavour $q_iq_jq_k$ where $i,j,k$ are indices indicating flavour


Without consider Pauli's principle we could think there are 27 combinations of $u,d,s$ quarks