Isospin symmetry: up and down quarks are indistinguishable to the strong nuclear force
Isospin is a non-physical property of hadrons that is mathematically analogues to spin, ie
βοΈ Notation
Spin | Isospin |
---|---|
$\bold {\hat L}^2$ | $\bold {\hat I}^2$ |
$L_x$ | $\hat I_1$ |
$L_y$ | $\hat I_2$ |
$L_z$ | $\hat I_3$ |
$m$ | $I_3$ |
$l$ | $I$ |
π Properties
$$ \begin{aligned} \bold {\hat I}^2&=\hat I^2_1+\hat I^2_2+\hat I^2_3 \\ [\hat I_i,\hat I_j]&=i\hbar \epsilon_{ijk} \hat I_k \quad \text{distinct} \; i,j,k\in \{1,2,3 \} \\ [\bold {\hat I}^2, \hat I_i]&=0 \quad \forall i \in\{1,2,3\}\\ \bold {\hat I}^2\ket{I, I_3}&=I(I+1)\hbar^2 \ket{I, I_3} \\ I_3&\in[-I,-I+1,\ldots,I] \end{aligned} $$
$I_3$ has $(2I+1)$ states for each multiplet (same $I$)
ποΈ Note: similar to $L_z$ by convention we use $I_3$
ποΈ Note: notation is a bit ambiguous because the usual lower case convention doesnβt work for $i$
π Definition:
- Up quark: $I_3=+\frac 12$
- Down quark $I_3=-\frac 12$
- all other quarks and leptons: $I=0$
β‘ Isospin is conserved in strong and electromagnetic interacts
From the definitions we write
$$ \begin{aligned} \text{Proton}: \;I_3&=+\frac{1}{2} \\ \text{Neutron}: \;I_3&=-\frac{1}{2} \end{aligned} $$
They form a doublet
π Example: pions $\pi^+$, $\pi^-$ and $\pi^0$
They have
$$ \left . \begin{aligned} \pi^+&:u\overline d\\ \pi^-&: \overline u d \\ \pi^0&:u \overline u +d\overline d
\end{aligned} \; \right \} \quad \Rightarrow \quad \left \{ \begin{aligned} \pi^+&:I_3=+1\\ \pi^-&:I_3=-1 \\ \pi^0&:I_3=0
\end{aligned} \right . $$
π Conclusion: they form an isospin triplet with $I=1$ with multiplicity of $(2I+1)=3$
π Definition: Hadrons are divided into baryons and mesons
- Baryons: quark content $qqq$
- Anti Baryons: quark content $\overline q \overline q \overline q$
- mesons: $q\overline q$
ποΈ Note: $q$ represent arbitrary quark flavour that are not necessarily the same
πΌ Case: Consider $u,d,s$ the lightest quarks in there ground stay $\vec L=0$ thus $\vec J=\vec L +\vec s=\vec s$
Looking at a baryon with arbitrary quark flavour $q_iq_jq_k$ where $i,j,k$ are indices indicating flavour
Without consider Pauli's principle we could think there are 27 combinations of $u,d,s$ quarks