Parameter range of stars:

HR-diagram

Untitled

Spectral classification scheme in order of temperature:

Class Spectrum Colour Temperature
O ionized and neutral helium, weakened hydrogen Bluish above $31000$ K
B neutral helium, stronger hydrogen Blue-white $9750-31000$ K
A strong hydrogen, ionized metals White $7100-9750$ K
F weaker hydrogen, ionized metals Yellowish-white $5950-7100$ K
G still weaker hydrogen, ionized and neutral metals Yellowish $5250-5950$ K
K weak hydrogen, neutral metals Orange $3800-5250$ K
M little or no hydrogen, neutral metals, molecules Reddish $2200-3800$ K

Hydrogen lines

$$ E_n\propto-\frac{1}{n^2} $$

The wavelength of the hydrogen line transitions are given by:

$$ \frac{1}{\lambda}=R\left(\frac{1}{n^2_1}-\frac{1}{n^2_2}\right) $$

Series names

<aside> <img src="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/5a2e0a65-8d23-422e-99e1-3adf844dd3ee/dynamic_time_scale.png" alt="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/5a2e0a65-8d23-422e-99e1-3adf844dd3ee/dynamic_time_scale.png" width="40px" /> The dynamic time scale: The time a star would take to collapse into itself if there was only the gravitational force acting on it

$$ t_{\text{dyn}}\approx\sqrt{\frac{1}{G\bar{\rho}}} $$

Newton’s shell theorem

<aside> <img src="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/d671af2c-a118-44e2-b431-157be87d1d22/Hydrostatic.png" alt="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/d671af2c-a118-44e2-b431-157be87d1d22/Hydrostatic.png" width="40px" /> Hydrostatic equilibrium: Stars must satisfy the following equation to a very high accuracy otherwise they would be unstable, in other words the pressure gradient needs to equal the gravitational force

$$ \frac{\text{d}P}{\text{d}r}=-\frac{Gm(r)\rho(r)}{r^2} $$

Ideal gas law (can be applied to stars)

$$ \begin{aligned}P&=nkT\\\text{or: }\quad PV&=nRT\end{aligned} $$