Previously we didn't consider the effect the way spin interacts with the magnetic field

Ad-hoc treatment

Here we will use a classical analogy to add a ad-hoc term

๐Ÿ’ผ Case: Consider the magnetic moment of a spinning charge $\vec \mu$ with a magnetic field $H=-\vec \mu \cdot \vec B$

The Pauli-Schrodinger equation

๐Ÿ’ผ Case: We introduce spinors to describe spatial and spin degree of freedom of a spin-$\frac 12$ particle

<aside> ๐Ÿฌ

Eigenspinorโ€™s: We define both the spin up $\chi^+_z$ and down $\chi^-_z$ for a spin-$\frac 12$ particle

$$ \chi_z^+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \chi_z^- = \begin{pmatrix} 0 \\ 1 \end{pmatrix} $$

with energy $\epsilon = \hbar /2$ and $\epsilon =-\hbar/2$ respectively

We can also look at the $\hat S_x$ and $\hat S_y$ which give

$$ \begin{aligned} \chi^+_x &=\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad & \quad \chi^-_x &=\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \\ \chi^+_y &=\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} \quad & \quad \chi^-_y &=\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \end{aligned} $$

</aside>