<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/61e6d87a-904d-4057-929b-a9ea8e4d937b/Taylor_series.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/61e6d87a-904d-4057-929b-a9ea8e4d937b/Taylor_series.png" width="40px" /> Taylor series: around a function $f(x)$ about the $x_0$

$$ \begin{aligned} f(x)&=f(x_0)+ f'(x_0)(x-x_0)+ f''(x_0) \frac{(x-x_0)^2}{2!}+\ldots \\ &=\sum^\infin_{n=0} \frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n

\end{aligned} $$

</aside>

Examples of Taylor series

  1. 🐛 Expand $e^x$ about $x=0$

  2. 🦋 Taylor series of $f(x)=(1-x)^{-1}$

Some important Taylor series

Untitled

where $\binom{a}{n}= a!/(n!(a-n)!)$

Series solution to ODE

  1. 🐌 Show that $y=a_0+a_2 x^2$ is a solution to Hermite’s equation

    <aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/884aef1c-cb30-43ce-9a19-918f699f8c78/Hermites_equation.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/884aef1c-cb30-43ce-9a19-918f699f8c78/Hermites_equation.png" width="40px" /> Hermite’s equation:

    $$ \frac{\text d^2 y}{\text d x^2}-2x \frac{\text dy}{\text dx}+2ny =0 \quad n>0 $$

    </aside>

  2. 🐿️ Hermite’s equation applied to Schrodinger equation for a SHM potential

  3. 🐩 SHM equation