<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/cb5f877b-6eaf-432e-be39-2e1361e0de6c/Legendres_equation.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/cb5f877b-6eaf-432e-be39-2e1361e0de6c/Legendres_equation.png" width="40px" /> Legendre’s equation is given by

$$ (1-x^2)\frac{\text d^2 y}{\text d x^2} -2x \frac{\text dy}{\text dx}+l(l+1)y=0 $$

where $y(x)$ is defined in the range $-1\le x \le 1$

</aside>

Legendre functions and Legendre polynomials

The divergence of the series at $x=\pm 1$ is a limitation which can be overcome when $l$ is a non-negative integer and we find $n=l$

Legendre polynomials for $l=0,1,2$

We solve using the solution to Legendre’s equation

Untitled

$l$ $y(x)$ Legendre Polynomial
$0$ $y=a_0$ $P_0(x)=1$
$1$ $y=a_1x$ $P_1(x)=x$
$2$ $y=a_0+a_2 x^2$ $P_2(x)=\frac{3x^2-1}{2}$

$P_2(x)$ was obtained from

$$ y(1)=a_0-3 a_0 x^2 =a_0(1-3)=1 $$

and hence $a_0=-\frac 12$ which gives

$$ P_2(x)=\frac{3x^2-1}{2} $$

🗒️ Note: this corresponds to solving an eigenvalue equation

$$ \hat L^2 P_l(x)=\lambda P_l(x) $$

where $\lambda=l(l+1)$ and $\hat L^2=-(1-x^2)\frac{\text d^2}{\text d x^2}+2 \frac{\text d}{\text dx}$.

Here $P_l$ are eigenfunctions of $\hat L^2$ subject to the boundary condition that they are convergent at $x=\pm 1$

The boundary conditions led to the discrete eigenvalues $l(l+1)$

Orthogonality of Legendre polynomials

We want to prove that over the interval $-1\le x \le 1$ we have