⚖️ Masses:
↕️ Distances:
🗜️ Density:
$\rho_{univ}=\frac{M_{univ}}{V_{univ}}=\frac{M_{univ}}{(4\pi/3)R_{univ}^3}$
Composition of the universe:
$M_{stars}\approx10^{30} \text{kg}$
$M_{universe}\approx10^{52} \text{kg}$
$d_{earth-pluto}\approx6*10^{12}\text{m}$
$d_{galacticCenter}\approx2*10^{20}\text{m}$
$d_{edgeUniverse}\approx10^{26}\text{m}$
= $2.4*10^{-27}\text{kgm}^{-3}$
H 90%; He: 10%; Rest: 0.01%
Solar Mass: $M_0=1.989*10^{30}\text{kg}$
Astronomical Unit: $1\text{AU}=1.5*10^{11}\text{m}$
Parsec: $1\text{pc}=3.1*10^{16}\text{m}$
$$ \text{Kilo}=10^3 \text{ ; Mega}=10^6 \text{ ; Giga}=10^{12} \text{ ; Tera}=10^{15} $$
$$ 1^{\text{o }}\text{degree}=60^{\text{o }}\text{arcmin ; }1^{\text{o }}\text{arcmin}=60^{\text{o }}\text{arcsec ; }1^{\text{o }}\text{rad}=57.3^{\text{o }}\text{degree} $$
numbers = 10-20%
never give more than 3 significant digits
⬆️ Declination: from -90 to +90
➡️ Right ascension: from 0 to 24h
📐 Solid angle(surface area):
($\theta$ is the diameter of the galaxy)
⌛ Parallax: change in position due to earth in arcsec
🌍 Proper motion: change in position($\mu$) due to star velocity(v) in the plane of the sky