$$ \frac{\partial f}{\partial x} =\lim_{\delta x \rightarrow 0} \frac{f(x+\delta x, y)-f(x, y)}{\delta x} $$
$$ df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy $$
$$ \frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}. $$
$$ f(x_1, x_2 \cdots x_m) = f(x_1^0, x_2^0 \cdots x_m^0) + \sum_{k=1}^{\infty} \frac{1}{k!}\left((x_1-x_1^0)\frac{\partial f}{\partial x_1}+\cdots+(x_m-x_m^0)\frac{\partial f}{\partial x_m}\right)^kf(x_1^0, x_2^0\cdots x_m^0) $$
$$ \begin{aligned} f(x,y) =& f(x_0,y_0) + (x-x_0)\frac{\partial f}{\partial x}(x_0,y_0) + (y-y_0)\frac{\partial f}{\partial y}(x_0,y_0) \\& + \frac{1}{2}(x-x_0)^2\frac{\partial^2 f}{\partial x^2}(x_0,y_0) + \frac{1}{2}(y-y_0)^2\frac{\partial^2 f}{\partial y^2}(x_0,y_0)\\ &+ (x-x_0)(y-y_0)\frac{\partial^2 f}{\partial x\partial y}(x_0,y_0)\end{aligned} $$
$$ \begin{aligned} &\bullet\,\text{1D line:}\quad\quad\;\;\,\int^{x_2}{x_1}\text{d}x=[x]^{x_2}{x_1}=(x_2-x_1) \\ &\bullet\,\text{2D surface:}\quad\int_{S}\int\text{d}x\text{d}y \\ &\bullet\,\text{3D volume:}\quad\int\int\int\text{d}x\text{d}y\text{d}z \\ \end{aligned} $$
Example: Area of a 1 by 1 triangle:
$$ \begin{aligned} \bullet \,\text{Known:}\;\quad\text{Area}&=\frac{1}{2}\times\text{base}\times\text{height}=\frac{1}{2}\times 1\times 1=\frac{1}{2} \\ \bullet \,\text{Integral:}\quad\text{Area}&=\int\int\text{d}x\text{d}y=\int_0^1\text{d}x\int_0^{1-x}\text{d}y=\int^1_0\text{d}x[1-x-0]\\ &=\int^1_01-x\,\text{d}x=\left[x-\frac{x^2}{2} \right]^1_0=\frac{1}{2} \\ \bullet \,\text{Integral:}\quad\text{Area}&=\int\int\text{d}y\text{d}x=\int_0^1\text{d}y\int_0^{1-y}\text{d}x=\int^1_0\text{d}y[1-y-0]\\ &=\int^1_01-y\,\text{d}y=\left[y-\frac{y^2}{2} \right]^1_0=\frac{1}{2} \end{aligned} $$
Example: mass of a rectangle defined as $y_1$ to $y_2$ in the $y$-axis and $x_1,x_2$ in the $x$-axis where the mass per unit is $\sigma(x,y)$: