<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/8260e212-b29d-43aa-b9ae-43d0c9bbe73a/vector.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/8260e212-b29d-43aa-b9ae-43d0c9bbe73a/vector.png" width="40px" /> Vector:

$$ \vec v= v_1 \,\hat i + v_2 \,\hat j + v_3 \,\hat k \equiv \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \equiv (v_1, v_2, v_3) $$

Vectors need to be written in terms of an orthonormal basis

$$ \begin{aligned} \hat i &=\hat x=\hat e_x =\hat e_1=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \\ \hat j &= \hat y = \hat e_y = \hat e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ \hat k &= \hat z = \hat e_z = \hat e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{aligned} $$

Unit vectors are made using:

$$ \hat v=\frac{\vec v}{|\vec v|} $$

Magnitude of a vector is:

$$ v=|\vec v|=\sqrt{v_1^2+v_2^2+v_3^2} $$

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/614e5f9c-6f86-495b-87a0-34f4076d5aaa/scalar_field.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/614e5f9c-6f86-495b-87a0-34f4076d5aaa/scalar_field.png" width="40px" /> Scalar field:

$\phi(\vec r)$ is a quantity with magnitude at position $\vec r=(x,y,z)$

Untitled

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/39137f22-ab77-41c4-a7ae-05f6c867515f/vector_field.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/39137f22-ab77-41c4-a7ae-05f6c867515f/vector_field.png" width="40px" /> Vector field:

$\vec v (\vec r)$ has magnitude and direction at $\vec r$

Untitled

</aside>

Vector calculus

Scalar field calculus

$$ \begin{aligned} \vec \nabla \Phi&=\frac{\partial \Phi}{\partial x}\, \hat i+\frac{\partial \Phi}{\partial y}\, \hat j+\frac{\partial \Phi}{\partial z}\, \hat k=\sum^3_{i=1} \frac{\partial \Phi}{\partial x_i} \hat e_i \\ \nabla^2\Phi&=\frac{\partial^2 \Phi}{\partial x^2}+\frac{\partial^2 \Phi}{\partial y^2}+\frac{\partial^2 \Phi}{\partial z^2}

\end{aligned} $$

Vector field calculus

$$ \begin{aligned} \vec\nabla\cdot \vec v&= \frac{\partial v_x}{\partial x}+\frac{\partial v_y}{\partial y}+\frac{\partial v_z}{\partial z} \\ \vec \nabla \times \vec v&= \left | \begin{matrix} \hat i & \hat j & \hat k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_x & v_y & v_z \end{matrix} \right | \\ \nabla^2\vec v&=\nabla^2 v_x \hat i+\nabla^2 v_y \hat j+\nabla^2 v_z \hat k \end{aligned} $$

Identities of curl’s and div’s

$$ \begin{aligned} \vec\nabla\times\vec\nabla\Phi&=0 \\ \vec \nabla \cdot ( \vec \nabla \times \vec v)&= 0 \\ \vec \nabla \times(\vec \nabla \times \vec v)&=\vec \nabla(\vec \nabla \cdot \vec v)-\nabla^2\vec v

\end{aligned} $$

Curvilinear coordinates

Integral theorems

$$ \int^b_a \frac{\text df}{\text dx}\,\text dx=f(b)-f(a)

$$