<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/94bdf5b8-3f7e-42e0-a356-3263b0cce9ae/Ideal_gas.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/94bdf5b8-3f7e-42e0-a356-3263b0cce9ae/Ideal_gas.png" width="40px" /> Ideal gas: a gas with point-like non-interacting poly-atomic molecules which have internal DoF (rot, vib)

</aside>

🗒️ Note: all gases tend to an ideal gas at low enough pressures

🗒️ Note: classical thermodynamics cannot predict the absolute entropy even of an ideal gas

Lagrange multipliers for constrained extremization

💼 Case: consider a hill with height $h(x,y)$

💃 Example: a hemisphere $h=h_0(1-x^2-y^2)$ constrained to $u(x,y)=y-mx-c=0$

$$ \begin{aligned} \frac{\partial (h+\lambda u)}{\partial x}&=0 \quad \Rightarrow -2h_0 x-\lambda m=0 \quad \Rightarrow x=-\lambda m /2h_0 \\ \frac{\partial (h+\lambda u)}{\partial y}&=0 \quad \Rightarrow -2h_0 y+\lambda=0 \quad \Rightarrow y=\lambda / 2h_0 =-x/m \end{aligned} $$

Hyperbolic Trigonometry

$$ \begin{matrix} \text{Euler}&\cos\theta=\frac 12 (e^{i\theta}+e^{-i\theta}) & \sin\theta=\frac 1{2i} (e^{i\theta}-e^{-i\theta}) & \tan\theta=\frac{e^{i\theta}-e^{-i\theta}}{i\left [ e^{i\theta}+e^{-iv} \right ]} \\ \\ &\sec \theta \equiv \frac 1 {\cos\theta} & \cosec\theta\equiv \frac 1 {\sin \theta} & \cot \theta\equiv \frac 1 {\tan \theta} \\ \\ \text{Euler}&\cosh x=\frac 12 (e^{x}+e^{-x}) & \sinh x=\frac 12 (e^{x}-e^{-x}) & \tanh x=\frac{e^{x}-e^{-x}}{ e^{x}+e^{-x} } \\ \\ &\operatorname{sech} x \equiv \frac 1 {\cosh x} & \operatorname{cosech} x\equiv \frac 1 {\sinh x} & \operatorname{coth} x\equiv \frac 1 {\tanh x} \\ \\ &\frac{\text d \cosh x}{\text dx} =\sinh x & \frac{\text d \sinh x}{\text dx} =\cosh x & \frac{\text d \tanh x}{\text dx} =\operatorname{sech}^2 x \\ \\ \text{Taylor}& \lim_{x\to 0} \sinh x = x & \lim_{x\to 0} \cosh x = 1+\frac 12 x^2 & \lim_{x\to 0} \tanh x = x \\ \\\ \text{Taylor} & \text{large approx} & \lim_{x\to 0} \cosh x = 1 & \lim_{x\to 0} \cosh x -1 = \frac 12 x^2 \\ \\ \text{Taylor} & \text{exponential} & \lim_{x\to 0} e^x = 1 & \lim_{x\to 0} e^x-1=x \\ \\ \text{Taylor}& \lim_{x\to \infin} \sinh x = \frac 12 e^x & \lim_{x\to \infin} \cosh x =\frac 12 e^x & \lim_{x\to \infin} \tanh x = 1 \end{matrix} $$