<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/40ec2a56-2306-436f-87b4-ebfd92c09728/matrix.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/40ec2a56-2306-436f-87b4-ebfd92c09728/matrix.png" width="40px" /> Matrix: an $n\times m$ matrix is as follows:

$$ A=\left [\left . \overbrace{\begin{matrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{matrix}}^{m} \right \}n \right ] $$

where $a_{ij}$ is the element in the $i$th row and $j$th column

</aside>

Matrix algebra in physics

🚀 Special relativity:

Eigenvalues and eigenvectors

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/c16ad9fc-2c24-4630-8be6-2a2b656d00e3/eigenvalues.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/c16ad9fc-2c24-4630-8be6-2a2b656d00e3/eigenvalues.png" width="40px" /> Eigenvalues $\lambda$ of a matrix $\bold A$ are

$$ \bold A \vec v_\lambda =\lambda \vec v_\lambda $$

where $\vec v_\lambda$ is the corresponding eigenvector.

To find the eigenvalues of an $n\times n$ matrix we solve the characteristic equation

$$ \det(\bold A-\lambda \bold I)=0 $$

</aside>

💃 Example:

🗒️ Note: In certain physical cases there are specific requirements such as in quantum with normalisation