๐Ÿ“– Definition:

Index notation


๐Ÿ’ƒ Example: to introduce index notation lets look at 2 ways to write the the transformation of $x^\mu$

$$ \begin{aligned} \begin{pmatrix} x'^0 \\ x'^1 \\ x'^2 \\ x'^3 \end{pmatrix}& = \begin{bmatrix} \gamma & - \gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix} \\[2.6em] x'^\mu &=\Lambda ^\mu_\nu x^\nu \qquad \text{where} \quad \Lambda ^ \mu_\nu = \frac{\partial x'^\mu}{\partial x^\nu} \end{aligned} $$


Derivatives

Metric tensor and inner product

Lorentz invariance of the Klein-Gordon equation

Now looking at our Klein Gordon equation:

$$ (\square + \mu^2) \psi(\vec r,t)=0 $$