<aside> 🌭

Quantum circuit model:

Screenshot 2025-02-28 162908.png

It has the following properties:

📖 Definition: Quantum register: a series of qubits

</aside>

Quantum Gate Basics

We define 2 general categories of gates:

💼 Case: for now lets consider a 1 Qubit system

🔀 Unitary gates:

💃 Example: consider the following circuit

image.png

💎 Conclusion: The transformation $\Phi_{\phi+\pi/2}H\Phi_\theta H$ rotates the basis $\{\ket{0} ,\ket{1}\}$ to the basis $\{ \ket{\theta,\phi},\ket{\Theta,\phi}^\perp \}$ where $\ket{\Theta,\phi}^\perp$ is perpendicular to $\ket{\Theta,\phi}$ and is up to a phase term

🗒️ Note: we can write the whole circuit as one matrix as follows

$$ \Phi_{\phi+\pi/2} H\Phi_\theta H=e^{i\theta/2} \begin{bmatrix} \cos (\theta /2 ) & -i\sin (\theta/2) \\ e^{i\phi} \sin (\theta/2) & ie^{i\phi} \cos (\theta/2) \end{bmatrix} $$


<aside> 🌭

Measurement gates: $M_B$ projection onto basis $B$. The state vector jumps to one or other element of $B$ with the usual probabilities. Normally $B$ is $\{ \ket0 ,\ket 1\}$

</aside>

💃 Example: another basis is the Hadamard basis $\{\ket{0_H},\ket{1_H}\}$

$$ \ket{0_H} =\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}= \frac{1}{\sqrt{2}} (\ket 0 + \ket 1 ) \qquad \ket{1_H} =\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}= \frac{1}{\sqrt{2}} (\ket 0 - \ket 1 ) $$


💼 Case: lets now consider two Qubit gates

🔀 Unitary gates: