πŸ€– Bosons: particles with $\Z$ spin

🍹 Fermions: particles with $\frac 12 \Z$ spin

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/3bb920d9-03db-42e9-b536-5e51a1844f77/Spin_of_a_composite_particle.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/3bb920d9-03db-42e9-b536-5e51a1844f77/Spin_of_a_composite_particle.png" width="40px" /> Spin of a composite particle: total angular momentum usually $J$ not $S$, $J$ is the quantised vector sum of all the spins and all the orbital angular momentum of all the constituents

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/1301850c-bca0-43ed-a4af-4f0f32ea2a5b/Pauli_exclusion_principle.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/1301850c-bca0-43ed-a4af-4f0f32ea2a5b/Pauli_exclusion_principle.png" width="40px" /> Pauli exclusion principle: no more than one fermion can occupy a single quantum state ($m_s$ is part of the description of the state)

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/3fe8e92d-d31a-4668-88d7-ed8b419e09f5/Pauli_Exclusion_principle_tougher.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/3fe8e92d-d31a-4668-88d7-ed8b419e09f5/Pauli_Exclusion_principle_tougher.png" width="40px" /> Pauli exclusion principle tougher: the overall wave function of a system of identical fermions must be antisymmetric under exchange of any pair

</aside>

πŸ’Ό Case: consider 2 spin-$\frac 12$ particles in the same spatial state

πŸ’Ό Case: 2-fermion spin-state such as $\uparrow \uparrow$

πŸ—’οΈ Note: identical bosons don’t follow Pauli exclusion, they’re symmetric under pair exchange

πŸ—’οΈ Note: nothing observable can change if we swap particles for bosons

$$ \begin{aligned} |\Psi(\vec r_1,\vec r_2,m_1,m_1)|^2=|\Psi(\vec r_2,\vec r_2,m_2,m_1)|^2 \\ \Psi(\vec r_1,\vec r_2,m_1,m_1)=e^{i\alpha}\Psi(\vec r_2,\vec r_2,m_2,m_1) \end{aligned} $$

Since the swaps need to return the same state without any phase change $\alpha=\{\pi,2\pi\}$

πŸ’³ Take-away: All particles in nature are either bosons or fermions. Their statistical properties are very different: no two fermions can be in the same state, but there is no such restriction on bosons.

The ideal gas of bosons or fermions

πŸ—’οΈ Note: our past assumption $n_Q\gg n$ is invalid for fermions thus we use the Gibbs distribution

πŸ—’οΈ Note: For fermions the sum in $\mathcal Z_r$ is restricted to the first two terms