<aside> <img src="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/59837002-4c2b-47ff-a970-bcd591515ad4/worm_1fab1.png" alt="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/59837002-4c2b-47ff-a970-bcd591515ad4/worm_1fab1.png" width="40px" /> Kepler's 3$^\text{rd}$ law:
$$ \begin{aligned} P^2&=a^3 \\ P^2&=\frac{4\pi^2a^3}{GM} \\
\end{aligned} $$
$$ P^2=\frac{4\pi^2a^3}{G(M_1+M_2)} $$
</aside>
$$ L=mrv\sin (\phi) $$
$$ F=\frac{mv^2}{r} $$
$$ v_s=\frac{M_p}{M_s}\sqrt{\frac{GM_s}{r_p}} $$
<aside> <img src="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/3f6e3f70-3b1b-41bb-b515-9a1cecacabbe/radial_velocity.png" alt="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/3f6e3f70-3b1b-41bb-b515-9a1cecacabbe/radial_velocity.png" width="40px" /> Radial velocity method: use the above equation to measure the shift of a star and see if there is a planet
</aside>
<aside> <img src="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/c8f97a92-61b9-4d86-86a4-1e646e558f05/Transit_method.png" alt="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/c8f97a92-61b9-4d86-86a4-1e646e558f05/Transit_method.png" width="40px" /> Transit method: look at the dip in light of a star
</aside>
$$ \frac{\Delta\lambda}{\lambda}=\frac{v}{c} $$
$$ T=\frac{1}{2\sqrt{r}}\sqrt[4]{\frac{fL}{\pi\sigma}} $$