Types of equations we are going to learn to solve:
$$ \begin{aligned} ✅ \quad \qquad \qquad \quad \; \; \, \, \nabla^2\phi&=0 \; \to \; \text{Laplace Equation}\\ ❌ \quad \qquad \qquad \quad \; \; \, \, \nabla^2\phi&=\underbrace{4\pi G\rho}{\tiny{Inhomogeneous}} \to \; \text{Poisson's Equation}\\ ✅ \quad \qquad \qquad \quad \; \; \; \nabla^2\phi&=\frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2}\;\to\;\text{Wave Equation} \\ ✅ \quad \, -\frac{\hbar^2}{2m}\nabla^2 \psi+ V\psi &=i \hbar \frac{\partial \psi}{\partial t} \; \to \; \text{Schrödinger Equation} \\ ❌ \quad \quad \; \; \, \, R{\mu \nu}-\frac{1}{2}g_{\mu\nu} R&=\underbrace{8\pi GT_{\mu\nu} }_{\tiny{Inhomogeneous}}\to \; \text{Einstein's Equation} \end{aligned} $$
We will focus on homogenous linear 2nd order PDE’s
Ordinary differential equations recap:
ODE | Solution |
---|---|
$\frac{\text df}{\text dx}=-\alpha f$ | $f=Ae^{-\alpha x}$ |
$\frac{\text d^2 f}{\text d x^2}=-\alpha^2 f$ | $f=A\cos(\alpha x)+B\sin(\alpha x)$ |
$a\frac{\text d^2 f}{\text d x^2}+b\frac{\text df}{\text dx}+cf=0$ | $f=Ae^{\lambda_1 x} +Be^{\lambda_2 x} \; \text{and} \; a\lambda_i^2+b\lambda_i+c=0$ |
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/ad729503-d764-43ff-aed7-bbeab151fbce/1-D_wave_equation.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/ad729503-d764-43ff-aed7-bbeab151fbce/1-D_wave_equation.png" width="40px" /> 1-D wave equation
$$ \frac{\partial ^2 \phi}{\partial x^2}=\frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} $$
with general solution: $\phi=f(x-ct)+g(x+ct)$
</aside>
To solve this we need the boundary conditions of string of length $l$ with edges fixed
$$ \phi(0,t)=\phi(l,t)=0 $$
and the condition at $\phi(x,0)$
Method to solve the wave equations:
🦾 Attempt
🔭 setting $\phi=X(x) T(t)$
$$ \begin{aligned} T\frac{\text d^2 X}{\text dx^2}&=X \frac{1}{c^2}\frac{\text d^2 T}{\text dt^2} \\ \underbrace{\frac{1}{X}\frac{\text d^2 X}{\text dx^2}}{\text{ind. }t }&=\underbrace{\frac{1}{c^2}\frac{1}{T}\frac{\text d^2 T}{\text dt^2}}{\text{ind. }x }
\end{aligned} $$
Thus they have to both be equal to a constant $-k^2$ since they are independent and equal
$$ \frac{1}{X}\frac{\text d^2 X}{\text dx^2}=-k^2 \qquad \frac{1}{T}\frac{\text d^2 T}{\text dt^2}=-c^2 k^2 $$
Considering $\phi=0$ and $x=0$
$$ X\propto \sin(kx) $$
which means $k=n\pi/l=k_n$, because we don’t know the boundary conditions of $t$
$$ T(t)=A_n \cos(c k_n t) + B_n \sin(c k_n t) $$
🛰️ Collate the terms to obtain the final solution3.
$$ \phi(x,t)=\sum_{n=1,2,..}\sin(k_nx) [A_n \cos(\omega_n t)+B_n \sin(\omega_n t)] $$
🚧
https://www.desmos.com/calculator/nks3apmlnk
To solve these problems you will need Fourier series: