๐ŸŽ Classically $\vec L=\vec r\times \vec p$ so we can write a vector-values quantum operator

$\widehat{\underline{L}}=\widehat{\underline{r}}\times\widehat{\underline{p}}$

$$ \widehat{\underline{L}}=\left|\begin{array}{ccc}\underline{i}&\underline{j}&\underline{k}\\\widehat{x}&\widehat{y}&\widehat{z}\\\widehat{p}_x&\widehat{p}_y&\widehat{p}_z\end{array}\right| $$

The total Angular momentum Operator $\widehat L^2$

Motion in a central potential

Classical Motion in a Central Potential

Untitled

if a mass $m$ is at some point described by $r$ and $\phi$ its velocity vector can be decomposed into components in the $\widehat r$ and $\widehat \theta$ directions $v_r$ and $v_\phi$ respectively