Consider two wire loops close to each other
⭐ This is mutual inductance
🗒️ only works for changing currents
$\Phi_{21}$ is flux through loop 2 due to loop 1, and $M_{21}$ is the mutual inductance
$$ \Phi_{21}=M_{21}I_1 $$
$$ \mathcal E_2=-\frac{\text d \Phi_{21}}{\text d t}=-M_{21}\frac{\text d I_1}{\text d t} $$
$$ \mathcal E_1=-\frac{\text d \Phi_{12}}{\text d t}=-M_{12}\frac{\text d I_2}{\text d t} $$
⭐ $M_{12}=M_{21}=M$ where $M$ is measured in Henrys $1$ H = $1$ Wb$/$A
Consider 2 coils wrapped around an iron core with $N_1$ and $N_2$ turns
$$ \begin{aligned} \Phi_1\propto B N_1 \;\; &\;\, ; \quad \Phi_2\propto B N_2 \\ \Rightarrow \quad \frac{\Phi_1}{\Phi_2}&=\frac{N_1}{N_2} \end{aligned} $$
$$ \frac{\text d\Phi_1}{\text dt}=\frac{N_1}{N_2}\frac{\text d \Phi_2}{\text dt} $$
⭐ A transformer allows AC voltage changes
Consider solenoid 1. previous result
$$ B_1=\mu_0 n_1 I_1 =\frac{\mu_0 N_1 I_1}{l} $$
$$ \begin{aligned} M&=M_{21}=\frac{\Phi_2}{I_1}=\frac{N_2B_1A}{I_1} \\ \Rightarrow M&=M_{12}=\frac{\mu_0 N_1 N_2 I_1 A}{l I_1}= \frac{\mu_0 N_1 N_2 A}{l} \end{aligned} $$