We start with the charge density and the current flux through a surface
$$ Q=\int\text dq=\int \rho (\vec r ,t)\,\text dV \qquad I=\int \text dI=\int \vec j(\vec r,t)\cdot \text d\vec S $$
Conservation implies $\dot Q=-I$
$$ \int_V\ \dot \rho \, \text dV=\dot Q =-\int_S \vec J \cdot \text d \vec S=-\int_V \vec \nabla \cdot \vec j \,\text dV $$
which can be rearranged to:
$$ \int_V \left \{ \dot{\rho} + \vec \nabla \cdot \vec j \right \} \,\text dV=0 $$
This must hold for any volume so
$$ \dot \rho +\vec \nabla \cdot \vec j =0 $$
✨ This is the continuity equation
Current $\vec j$ through a surface, with surface element $\text d\vec S=\hat n\text dA$
We can define a velocity field $\vec{\mathrm{v}}$ such that $\vec j = \rho \vec{\mathrm v}$ which corresponds to the local velocity of the positive charge carriers
$$ \begin{aligned} I&=\int \text dI \\ &=\int \vec J \cdot \text d \vec S \\ &=\int \rho \vec{\mathrm v} \cdot \hat n \,\text dS \\ &= -n\,e\,v_\text{drift}\int \text dS
\end{aligned} $$
⚡ Electric field or electric flux density [Vm$^{-1}$], $\vec E(\vec r,t)$
🧲 Magnetic field or magnetic flux density [T], $\vec B(\vec r,t)$
🔌 Electric flux through a surface [Vm]
$$ \Phi_\text E=\int_S \vec E \cdot \text d\vec S $$
🛩️ Magnetic flux through a surface units [Wb]=[Tm$^2$]=[Vs]
$$ \Phi_\text B=\int_S \vec B\cdot \text d \vec S $$
👊 The force per unit charge [NC$^{-1}$] is computed via the Lorentz force law
$$ \vec f=\vec E+\vec {\mathrm v} \times \vec B $$
🧹 The electromagnetic energy density [Jm$^{-3}$] in vacuum is
$$ u=\frac 12 \epsilon_0 |\vec E |^2 + \frac{1}{2\mu_0} |\vec B|^2 $$
🌐 The total electromagnetic energy in a volume $V$ is [J]
$$ U_\text{tot}=\int_V u\,\text dV $$
🏋️ The electromotive force [V] is
$$ \mathcal{E}=\int \vec E\cdot\text d\vec l $$
Experimentally we found
$$ \int_S \vec E\cdot \text d\vec S=\Phi_\text{E}=\frac{Q}{\epsilon_0}=\frac{1}{\epsilon_0}\int_V \rho\,\text d V $$
Using the divergence theorem we can find
$$ \int_S\vec E\cdot \text d\vec S=\int_V \vec \nabla \cdot \vec E\,\text dV =\frac{1}{\epsilon_0}\int_V\rho\,\text dV $$
so that
$$ \int_V \left ( \vec \nabla\cdot \vec E-\frac{1}{\epsilon_0}\rho \right )\,\text dV=0 $$
this integral must hold over any integration volume $V$ and therefore must be zero
$$ \vec \nabla \cdot \vec E=\frac{1}{\epsilon_0}\rho $$
which is the differential form of Gauss’ law