Proving the continuity equation

Current $\vec j$ through a surface, with surface element $\text d\vec S=\hat n\text dA$

Current $\vec j$ through a surface, with surface element $\text d\vec S=\hat n\text dA$

We can define a velocity field $\vec{\mathrm{v}}$ such that $\vec j = \rho \vec{\mathrm v}$ which corresponds to the local velocity of the positive charge carriers

$$ \begin{aligned} I&=\int \text dI \\ &=\int \vec J \cdot \text d \vec S \\ &=\int \rho \vec{\mathrm v} \cdot \hat n \,\text dS \\ &= -n\,e\,v_\text{drift}\int \text dS

\end{aligned} $$

Definitions

  1. ⚡ Electric field or electric flux density [Vm$^{-1}$], $\vec E(\vec r,t)$

  2. 🧲 Magnetic field or magnetic flux density [T], $\vec B(\vec r,t)$

  3. 🔌 Electric flux through a surface [Vm]

    $$ \Phi_\text E=\int_S \vec E \cdot \text d\vec S $$

  4. 🛩️ Magnetic flux through a surface units [Wb]=[Tm$^2$]=[Vs]

    $$ \Phi_\text B=\int_S \vec B\cdot \text d \vec S $$

  5. 👊 The force per unit charge [NC$^{-1}$] is computed via the Lorentz force law

    $$ \vec f=\vec E+\vec {\mathrm v} \times \vec B $$

  6. 🧹 The electromagnetic energy density [Jm$^{-3}$] in vacuum is

    $$ u=\frac 12 \epsilon_0 |\vec E |^2 + \frac{1}{2\mu_0} |\vec B|^2 $$

  7. 🌐 The total electromagnetic energy in a volume $V$ is [J]

    $$ U_\text{tot}=\int_V u\,\text dV $$

  8. 🏋️ The electromotive force [V] is

    $$ \mathcal{E}=\int \vec E\cdot\text d\vec l $$

Proving laws:

🧄 Gauss’ law