Force due to a magnetic field.png

A charge moving through a magnetic field experiences a force

$$ \vec F=q(\vec v\times \vec B) $$

$$ 1 \text{ Tesla}=1\text{ NC}^{-1}\text{m}^{-1}\text{s} $$

Lorentz’s force law

If there is a combination of E-field and B-field then:

$$ \vec F=q(\vec E+\vec v\times \vec B) $$

$q(\vec v\times\vec B)$ $q\vec E$
Vector Vector
Is only non-zero if the charge is moving Acts whether the charge moves or not
Acts in a direction $\perp$ to $\vec v$ and $\vec B$ Acts in a direction $\parallel$ to $\vec E$

Lorentz's force law.png

Motion of a charged particle in a B-field

Consider a charge $q$ moving with a velocity $\vec v$ in a field $\vec B$ we get:

$$ \begin{aligned} F&=Bqv_\perp=\frac{mv_\perp^2}{r} \\ &\Rightarrow r=\frac{mv_\perp}{qB} \end{aligned} $$

where $v_\perp$ is part of $\vec v$ that is $\perp$ to $\vec B$

Current carrying wire

Force on a current arrying wire.png

$$ \vec I = nAq \vec v $$

$$ \vec F=q(\vec v\times\vec B) $$

$$ \vec F_\text{wire}=nAlq(\vec v\times \vec B)=l(\vec I\times\vec B) $$

$$ v=\frac{I}{nqA} $$

Work done by magnetic field

$$ W_\text{m}=\int\vec F_\text{m}\cdot \vec v\,\text dt=\int q(\vec v\times\vec B)\cdot\vec v\,\text dt=0 $$