🗒️ Note: in this section we care bout interaction with matter, photon nature of light

💼 Case: consider transitions between two energy levels $1$ and $2$ with electron densities $N_1$ and $N_2$ All photons emitted and abosrbed are of frequency $\nu$ where $h\nu =E_2-E_1$

Untitled

Untitled

Untitled

🗒️ Notes: In thermal equilibrium we have

Hence by substituting and comparing coefficients

$$ \boxed{B_{12}=B_{21} \qquad \frac{A_{21}}{B_{21}}=\frac{8\pi h \nu^3}{c^3}} $$

Optical gain

💼 Case: Consider a medium where the molecules are in an excited stated called a gain medium

Untitled

$$ I(z)=I(0) e^{\gamma z} $$

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/f6b82d47-71ad-426d-929d-8e79f0001774/Stimulated_emission_cross_section.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/f6b82d47-71ad-426d-929d-8e79f0001774/Stimulated_emission_cross_section.png" width="40px" /> Stimulated emission cross section: $\sigma \equiv sB_{21}h \nu/c$.

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/3d2e8622-9061-4ca5-84e3-39932e2a6567/gain_coefficient.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/3d2e8622-9061-4ca5-84e3-39932e2a6567/gain_coefficient.png" width="40px" /> gain coefficient: is $\gamma$ where is defined as follows and has dimensions $\rm m^{-1}$

$$ \gamma =s(N_2-N_1)B_{21}\frac{h\nu}{c}\equiv (N_2- N_1)\sigma $$

</aside>

🗒️ Notes: