<aside> đź«´ The Lagrangian:

$$ \boxed{L=T-V}=\frac 12 m\dot x^2-V(x) $$

</aside>

<aside> 🕊️ Lagrange’s equation:

$$ \boxed{\frac{\partial L}{\partial x}=\frac{\text d}{\text dt}\left ( \frac{\partial L}{\partial \dot x} \right )} $$

</aside>

The rate of change of momentum is equal to the force

Simple example

đź’Ľ Case: Consider a mass on a spring $V=\frac 12 kx^2$

  1. 🍎 Newton’s method:

    $$ m\ddot x=F=-\frac{\partial V}{\partial x}=-kx $$

  2. ⚡ Energy conservation

    $$ E=\frac 12 m\dot x^2+\frac 12 kx^2 = \text{constant} $$

  3. 🍋 Lagrange’s method

    $$ L=\frac 12 m\dot x^2-\frac 12 kx^2 $$

Classical mechanics in 3 dimensions

In three dimensions $V=V(x,y,z)$ and $T=\frac 12 m(\dot x^2+\dot y^2+\dot z^2)$ and we obtain three Lagrange’s equations:

$$ \begin{aligned} \frac{\text d}{\text dt}\left ( \frac{\partial L}{\partial \dot x}\right )&=\frac{\partial L}{\partial x} \\ \frac{\text d}{\text dt}\left ( \frac{\partial L}{\partial \dot y}\right )&=\frac{\partial L}{\partial y} \\ \frac{\text d}{\text dt}\left ( \frac{\partial L}{\partial \dot z}\right )&=\frac{\partial L}{\partial z}

\end{aligned} $$

or alternatively in a more compact form for $x_i=x,y,z$ :

$$ \frac{\text d}{\text dt}\left ( \frac{\partial L}{\partial \dot x_i}\right )=\frac{\partial L}{\partial x_i} $$

Real and virtual displacements

The differences are

đź’» Virtual displacement

$$ \delta \vec r_i=\sum^n_{j=1}\frac{\partial \vec r_i}{\partial q_j}\delta q_j $$

virtual displacement of the generalized coordinates with small change $\{ \delta q_j \}$.

đźš“ Real displacement

$$ \text d \vec r_i=\left [ \sum^n_{j=1}\frac{\partial \vec r_i}{\partial q_j}\dot q_j+\frac{\partial \vec r_i}{\partial t} \right ]\text dt $$

real displacement in time $\text dt$