Scale and units

⚛️ Atomic Physics

☢️ Nuclear Physics

🗒️ Note: we will work in natural units $c=\hbar = 1$

Useful quantities:

$$ \begin{aligned} \hbar c &\approx 200 \rm\, MeV \, fm \\ \text{fine structure constant: } \quad\alpha &=\frac{1}{4\pi \epsilon_0}\frac{e^2}{\hbar c} = \frac{1}{137} \; \text{ (dimensionless) }\;\;

\end{aligned} $$

⚠️ Warning: don’t use SI units

Wave particle duality and its consequences

Nuclei exhibit wave-like Phenomena, thus they follow the following relations:

Antiparticles

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/52196f78-16dc-4db1-9269-6ab934d44ae5/Antiparticles.gif" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/52196f78-16dc-4db1-9269-6ab934d44ae5/Antiparticles.gif" width="40px" />

Antiparticles: have the same properties but reversed charges. Postulated by Dirac they come from the fact that the total energy of a particle $E^2 =p^2 c^2+ m_0^2 c^4$ has a negative energy solution: $E =\pm \sqrt{p^2 c^2+ m_0^2 c^4}$

</aside>

Properties:

Angular momentum

$$ \vec L = \vec r \times \vec p \Rightarrow \left \{ \begin{aligned} \hat L_x&=-i \hbar \left ( y\frac{\partial }{\partial z}-z\frac{\partial}{\partial y} \right ) \\ \hat L_y&=i \hbar \left ( x\frac{\partial }{\partial z}-z\frac{\partial}{\partial x} \right ) \\ \hat L_z&=-i \hbar \left ( x\frac{\partial }{\partial y}-y\frac{\partial}{\partial x} \right ) \end{aligned} \right . $$