<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/cae7d0f5-acbf-496f-b7f2-f125482c70de/inner_product.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/cae7d0f5-acbf-496f-b7f2-f125482c70de/inner_product.png" width="40px" /> Inner product: $\lang \vec a |\vec b \rang$ is a scalar function (takes 2 vectors and returns a scalar). For a complex vector space $V^N(\mathbb C)$, the inner product has the following properties:

  1. It is linear in the second argument $\rm \vec w =\lambda \vec u+\upsilon \vec v$ then $\rm \left < \vec a |\vec w\right >=\lambda \left < \vec a |\vec u\right >+\mu \left < \vec a |\vec v\right >$
  2. Under complex conjugate we have $\left < \vec a |\vec w\right >=\overline{\left < \vec w |\vec a\right >}$ </aside>

🗒️ Note: thus we get the norm is $||\vec a||^2=\left <\vec a|\vec a \right > \ge 0$. $||\vec a||^2=0$ if $\vec a =\vec 0$

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/2597e894-cb51-44f4-89ec-bdfdaf6d1bf5/Orthogonality.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/2597e894-cb51-44f4-89ec-bdfdaf6d1bf5/Orthogonality.png" width="40px" /> Orthogonality: 2 vectors $\vec a$ $\vec b$ which are elements of the inner product space $V^N$ are orthogonal if $\left < \vec a |\vec b \right >=0$

</aside>

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/334e8c57-ad03-4811-be2d-4884459252b1/Orthogonal_basis.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/334e8c57-ad03-4811-be2d-4884459252b1/Orthogonal_basis.png" width="40px" /> Orthogonal basis: A basis set $\{ \hat e_j\}^N_{j=1}$ of the inner product space is said to be orthogonal if $\left < \hat e_i |\hat e_j \right > =A\delta _{ij}$ where $A\in \mathbb C$ and $\delta _{ij}$ is the Kronecker-$\delta$. If $A=1$ then it is orthonormal.

</aside>

Consider the set of vectors $\{ \hat e_j\}^N_{j=1}$ which form a complete and orthogonal basis set for the vector space $V^N$. Two vectors $\vec a,\vec b\in V^N$ with representation $\vec a=\sum_j a_j\hat e_j$ and $\vec b=\sum_j b_j \hat e_j$ will have an inner product of the form

$$ \begin{aligned} \left <\vec a |\vec b \right >&=\sum^N_{i,j=1}\overline a_ib_j \\ &=\sum^N_{i,j=1}\overline{a_i}b_{j}=\sum^N_{i,j=1}\overline a_i \delta_{ij} b_j=\sum^N_{i=1} \overline a_i b_i

\end{aligned} $$

🗒️ Note: this leads to the following:

$$ \left < \hat e_k |\vec a\right >=\sum^N_{j=1}a_j \left < \hat e_k|\hat e_j\right >=\sum ^N_{j=1}a_j \delta_{kj}=a_k $$

tells us how much of the vector $\vec a$ is in the direction $\hat e_k$

Gram-Schmidt orthogonalization

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/3b5e5812-9eec-4cda-a902-101e74c2c007/Gram-Schmidt_orthogonalization.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/3b5e5812-9eec-4cda-a902-101e74c2c007/Gram-Schmidt_orthogonalization.png" width="40px" /> Gram-Schmidt orthogonalization: Consider a general basis $\{\vec v_j\}^N_{j=1}$ for the inner-product space $V^N.$ We can construct an orthonormal basis $\{\hat e_j\}^N_{j=1}$ using the following procedure:

  1. For any arbitrary starting vector we have $\vec u_1=\vec v_1$

  2. Then we have $\vec u_2=\vec v_2-\left < \vec u_1 |\vec v_2 \right > \vec u_1$ or more generally

    $$ \vec u_m= \vec v_m-\sum^{m-1}_{j=1}\left < \vec u_j |\vec v_m\right > \vec u_j $$

The vectors $\{\vec u_j\}^N_{j=1}$ are an orthogonal basis for the vector space $V^N$, but have an orthonormal basis, we normalise the vectors, such that $\hat e_j=\vec u_j/||\vec u_j||$

</aside>

💃 Example: Consider the following vector in $\R^3$

$$ \vec v_1=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \vec v_2=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad \vec v_3= \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} $$

  1. Step 1

    $$ \vec u_1=\vec v_1=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} $$

  2. Step 2

    $$ \vec u_2=\vec v_2-\underbrace{\left < \vec u_1 | \vec v_2 \right >}_{2}\vec u_1=\begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} $$

  3. Step 3

    $$ \vec u_3=\vec v_3-\underbrace{\left < \vec u_1 | \vec v_3 \right >}{2}\vec u_1-\underbrace{\left < \vec u_2 | \vec v_3 \right >}{-3}\vec u_2=\begin{pmatrix} -4 \\ -7 \\ -5 \end{pmatrix} $$

Dirac notation ( Bra Ket )