💼 Case: the hydrogen atom

🗒️Note: if we add the spin DOF, we get 4 quantum numbers $(n,l,m_l,m_s)$, with the spin quantum number $m_s=\pm 1/2$. The spin is usually denoted as $\chi_{m_s}$. The eigenequation for the spin is

$$ \hat S_z \chi_{m_s}=m_s\hbar \chi _{m_s} \qquad m_s=\pm \frac 12 $$

n $l=0$ $l=1$ $l=2$
1 $e^{-r/a_0}$
2 $\left ( 1-\frac{r}{2a_0} \right )e^{-r/2a_0}$ $\frac{r}{a_0}e^{-r/2a_0}$
3 $\left ( 1-\frac{2r}{3a_0}+\frac{2r^2}{17a_0^2} \right ) e^{-r/3a_0}$ $\frac{r}{a_0}\left ( 1-\frac{r}{6a_0} \right ) e^{-r/3a_0}$ $\left ( \frac{r}{a_0} \right )^2 e^{-r/3a_0}$

Examples of $R_{n,l}(r)$

Examples of $R_{n,l}(r)$

Untitled

the ground state of hydrogen-like atom is described by the wavefunction $\psi_{1,0,0}=\psi_{1s}$ or the 1s-orbital, with the ground state energy

$$ E_1=E_{1s}=-13.6Z^2\; \mathrm{eV} $$

Other states are excited and have higher $E_n$.

We can extend the energy state to multi-electron hydrogen atoms (within the independent-particle approximation) by occupying the energy levels to build up the states of $N$-electron atoms by occupying the $N$ energy within the limitations of the Pauli exclusion principle and spin dof. (Aufbau principle)

Atomic orbitals

Untitled

💃 Example: $\psi_{1,0,0}$ as $1s$-orbital, $\psi_{2,1,m_l}$ with $m_l=0,\pm 1$ as $2$p-orbitals, $\psi_{3,2,m_l}$ with $m_l=0,\pm1,\pm 2$ as $3d$-orbital, etc. For these orbitals we can write:

$$ p_z=p_0 \qquad p_x=\frac{1}{\sqrt{2}} (p_1+p_{-1}), \quad p_y=\frac{1}{i\sqrt{2}}(p_1-p_{-1}) $$