🧠 Remember:

Hadrons Composition
Meson $q\overline q$
Baryons $qqq$
Anti-Baryons $\overline q\overline q\overline q$

Hadron quantum number definitions

<aside> <img src="attachment:f7f818dd-2aa9-4b90-bbcc-5c3743a11e9e:charge.png" alt="attachment:f7f818dd-2aa9-4b90-bbcc-5c3743a11e9e:charge.png" width="40px" />

Charge:

$$ Q_\text{hadron}=\sum_i q_i $$

where $q_i$ is the charge of a constituent

</aside>

<aside> <img src="attachment:54f43de8-f443-46b9-bf8f-070a6cb2ebd3:baryon_number.png" alt="attachment:54f43de8-f443-46b9-bf8f-070a6cb2ebd3:baryon_number.png" width="40px" />

Baryon Number:

$$ B=\tfrac 13[N_q-N_{\overline q}] \qquad $$

Mesons: $B=0$ ; baryons: $B=1$ ; anti-baryons: $B=-1$

</aside>

<aside> <img src="attachment:a2fc46f0-c3f1-40e5-8bfe-981638cb4e79:strangeness.gif" alt="attachment:a2fc46f0-c3f1-40e5-8bfe-981638cb4e79:strangeness.gif" width="40px" />

Strangeness:

$$ S=-[N_s-N_{\overline s}] $$

where $N_s$ and $N_{\overline s}$ is the number of strange and anti strange quarks respectively

</aside>

<aside> <img src="attachment:967ed0a8-54bc-41fc-9cf7-dd7b6c2c8691:charmness.gif" alt="attachment:967ed0a8-54bc-41fc-9cf7-dd7b6c2c8691:charmness.gif" width="40px" />

Charmness:

$$ C=[N_c-N_{\overline c}] $$

</aside>

<aside> <img src="attachment:3f74897b-e2ed-4bc7-b6ab-ff43c46dd3de:bottomness.png" alt="attachment:3f74897b-e2ed-4bc7-b6ab-ff43c46dd3de:bottomness.png" width="40px" />

Bottomness:

$$ \tilde B=-[N_b-N_{\overline b}] $$

🗒️ Note: the tilde ~ is to distinguish between Baryon number and Bottomness

</aside>

💃 Examples:

Particle Composition $Q$ $S$ $C$ $\tilde B$
$p$ $uud$ $1$ $0$ $0$ $0$
$n$ $udd$ $0$ $0$ $0$ $0$
$\Lambda$ $uds$ $0$ $-1$ $0$ $0$
$\Lambda_c$ $udc$ $1$ $0$ $1$ $0$
$\Lambda_b$ $udb$ $0$ $0$ $0$ $-1$
$\pi^+$ $u\overline d$ $1$ $0$ $0$ $0$
$K^-$ $s \overline u$ $-1$ $-1$ $0$ $0$
$D^-$ $d\overline c$ $-1$ $0$ $-1$ $0$
$D^+_s$ $c \overline s$ $1$ $1$ $1$ $0$
$B^-$ $d \overline u$ $-1$ $0$ $0$ $-1$
$\Upsilon$ $b \overline b$ $0$ $0$ $0$ $0$

🗒️ Note: blue is baryons and green is mesons

Hadron spin

🧠 Remember: The spin of hadron is the sum of the total angular momentum constituents

$$ {\text{Spin of bound state } \hat {\bold S}B = \hat {\bold J}\text{constituents} \text{ total angular momentum of the constituents}} $$

This is equal to $(\hat {\bold L} + \hat {\bold S})_\text{constituents}$


⚙️ Properties:


💼 Case: a meson, quark antiquark and angular momentum $l$

image.png

$$ j=l+s=0+(1\text{ or } 0)=1\text{ or } 0 $$

which we can write as the following states $^{2S+1}L_{J}=\ ^1S_0$ and $^3S_1$ for spin-$0,1$ respectively