Isospin

💼 Case: lets consider a family of particles which have the same Baryon $(B)$, stangeness $(S)$, charmness $(C)$, bottomness $(\tilde B)$ and spin parity ($J^P$)

<aside> <img src="attachment:861d5d2c-24f6-4dcc-8234-41a04fd05f80:person-in-lotus-position_1f9d8.png" alt="attachment:861d5d2c-24f6-4dcc-8234-41a04fd05f80:person-in-lotus-position_1f9d8.png" width="40px" />

Isospin multiplet: Particles with the same $B,S,C,\tilde B$ and $J^P$ but different $Q$

</aside>

💃 Example:

image.png

Isospin of quarks

Since the isospin appears to depend on the composition we can write the isospin of quarks

Quark $B$ $Y$ $Q$ $I_3$ $I$
$d$ $1/3$ $1/3$ $-1/3$ $-1/2$ $1/2$
$u$ $1/3$ $1/3$ $2/3$ $1/2$ $1/2$
$s$ $1/3$ $-2/3$ $-1/3$ $0$ $0$
$c$ $1/3$ $4/3$ $2/3$ $0$ $0$
$b$ $1/3$ $-2/3$ $-1/3$ $0$ $0$
$t$ $1/3$ $4/3$ $2/3$ $0$ $0$

💎 Conclusion: the up quark and down quark are an isospin doublet

⚙️ Properties: of Isospin a composite objects in term of constituents $a ,b$

Light hadron spectra

<aside> <img src="attachment:9d027f30-5d7f-4641-a876-5126cb48b651:sjupermultiples.png" alt="attachment:9d027f30-5d7f-4641-a876-5126cb48b651:sjupermultiples.png" width="40px" />

Supermultiples: particles with the same $B$ and $J^P$

</aside>

💼 Case: lets consider the the supermultiples of light hadrons ie $C=\tilde B =0$, thus the quarks will be composed of $u,d,s$

Now lets consider the baryon case and the meson case