Interaction Lifetime ($s$)
Strong $10^{-22}-10^{-24}$
Electromagnetic $10^{-16}-10^{-21}$
Weak $10^{-7}-10^{-13}$

We define a rough approximation for these

$$ \frac{\alpha_\text{em}}{\alpha_\text{s}}\sim \sqrt{\frac{\tau_\text s}{\tau_\text{em}}} $$

πŸ—’οΈ Note: for low mass hadron we have $\alpha_\text{s}\sim 1$ so the ratio of lifetime $\frac{\tau_\text{em}}{\tau_\text{s}}\sim 10^4$

πŸ—’οΈ Note: for low mass hadrons we have $\frac{\alpha_\text{w}}{\alpha_\text{s}}\sim \sqrt{\frac{\tau_\text s}{\tau_ \text w}}$ which gives $\frac{\alpha_\text w}{\alpha_\text s} \sim 10^{-7}$

Conservation laws in hadron decays

Force Conserved quantum number
Strong $B,Q,S,C,\tilde B, J^{PC}$
Electromagnetic $B,Q,S,C,\tilde B,L_e,L_\mu,L_\tau,J^{PC}$
Weak $B,Q,L_e,L_\mu,L_z,J$

πŸ’Ό Case: lets consider $K^-+p\to \pi^0 + X^0$ via strong interaction where $X$ is to be found

Looking at the quantum numbers we can write our interaction as follows

Quantum numbers $K^-$ $p$ $\to$ $\pi^0$ $X^0$
$S$ $-1$ $0$ $\rightarrow$ $0$ $(-1)+(0)-(0)=-1$
$C$ $0$ $0$ $\rightarrow$ $0$ $(0)+(0)-(0)=0$
$\tilde B$ $0$ $0$ $\rightarrow$ $0$ $(0)+(0)-(0)=0$
$B$ $0$ $1$ $\rightarrow$ $0$ $(0)+(1)-(0)=1$
$Q$ $-1$ $+1$ $\rightarrow$ $0$ $(-1)+(+1)-(0)=0$

πŸ—’οΈ Note: for the last column we used the conserved quantum numbers in the strong interaction

πŸ’Ž Conclusion: $X^0$ is a neutral baryon with $uds$ constituents so it is a $\Lambda^0$

Quark diagrams

πŸ’ƒ Example: $\Pi^++p\to \Lambda^{++}\to \Pi^+ +p$

image.png

πŸ“œ Rules:

πŸ—’οΈ Note: we don’t write down the intermediate doubly charge $\Lambda ^{++}$ in the diagram


We can use these diagrams to check if certain decays are allowed πŸ’ƒ Example: consider $K^-+p\to \Pi^0+\Lambda^0$

image.png

πŸ’Ž Conclusion:

πŸ—’οΈ Note: here the intermediate particle $\Lambda^0$ is the only that respects conservation rules

Forbidden interaction

πŸ’Ό Case: lets consider the $\pi^0\to3\gamma$