Interaction | Lifetime ($s$) |
---|---|
Strong | $10^{-22}-10^{-24}$ |
Electromagnetic | $10^{-16}-10^{-21}$ |
Weak | $10^{-7}-10^{-13}$ |
We define a rough approximation for these
$$ \frac{\alpha_\text{em}}{\alpha_\text{s}}\sim \sqrt{\frac{\tau_\text s}{\tau_\text{em}}} $$
ποΈ Note: for low mass hadron we have $\alpha_\text{s}\sim 1$ so the ratio of lifetime $\frac{\tau_\text{em}}{\tau_\text{s}}\sim 10^4$
We looked at strong compared to EM but we can see that weak decays are very supressed
π Example: $n\to p+ e^- +\overline \nu_e$ energy produced is $\Delta E\sim 0.8 \,\rm MeV$ but the mass of the $W$ boson is $m_W\sim 80 \,\rm GeV$ making it obviously very supressed
ποΈ Note: for low mass hadrons we have $\frac{\alpha_\text{w}}{\alpha_\text{s}}\sim \sqrt{\frac{\tau_\text s}{\tau_ \text w}}$ which gives $\frac{\alpha_\text w}{\alpha_\text s} \sim 10^{-7}$
Force | Conserved quantum number |
---|---|
Strong | $B,Q,S,C,\tilde B, J^{PC}$ |
Electromagnetic | $B,Q,S,C,\tilde B,L_e,L_\mu,L_\tau,J^{PC}$ |
Weak | $B,Q,L_e,L_\mu,L_z,J$ |
πΌ Case: lets consider $K^-+p\to \pi^0 + X^0$ via strong interaction where $X$ is to be found
Looking at the quantum numbers we can write our interaction as follows
Quantum numbers | $K^-$ | $p$ | $\to$ | $\pi^0$ | $X^0$ |
---|---|---|---|---|---|
$S$ | $-1$ | $0$ | $\rightarrow$ | $0$ | $(-1)+(0)-(0)=-1$ |
$C$ | $0$ | $0$ | $\rightarrow$ | $0$ | $(0)+(0)-(0)=0$ |
$\tilde B$ | $0$ | $0$ | $\rightarrow$ | $0$ | $(0)+(0)-(0)=0$ |
$B$ | $0$ | $1$ | $\rightarrow$ | $0$ | $(0)+(1)-(0)=1$ |
$Q$ | $-1$ | $+1$ | $\rightarrow$ | $0$ | $(-1)+(+1)-(0)=0$ |
ποΈ Note: for the last column we used the conserved quantum numbers in the strong interaction
π Conclusion: $X^0$ is a neutral baryon with $uds$ constituents so it is a $\Lambda^0$
π Example: $\Pi^++p\to \Lambda^{++}\to \Pi^+ +p$
π Rules:
- Time ordering goes from left to right
- Quark arrows point right
- Antiquark arrows point left
- Continuity of quark lines reflects quark-antiquark production in pairs
ποΈ Note: we donβt write down the intermediate doubly charge $\Lambda ^{++}$ in the diagram
We can use these diagrams to check if certain decays are allowed π Example: consider $K^-+p\to \Pi^0+\Lambda^0$
π Conclusion:
ποΈ Note: here the intermediate particle $\Lambda^0$ is the only that respects conservation rules
πΌ Case: lets consider the $\pi^0\to3\gamma$