$$ \oint_S\vec{E}\cdot \text{d} \vec{A}=\frac{Q}{\epsilon_0} $$

Area vector

Example: Cartesian coordinates:

Example of an area vector for cartesian coordinates

Example of an area vector for cartesian coordinates

Gauss’ law for a point charge

$$ \oint_S\vec{E}\cdot \text{d} \vec{A}=\oint_SE\, \text{d} A=E\oint_S\, \text{d} A=\boxed{E\,4\pi r^2}=\frac{q}{4\pi\epsilon_0 r^2}4\pi r^2=\boxed{\frac{q}{\epsilon_0}} $$

In red is the spherical gaussian surface $\text d \vec A$, the orange and yellow vectors are the Electric field $\vec E$, and the center sphere is the charge $q$

In red is the spherical gaussian surface $\text d \vec A$, the orange and yellow vectors are the Electric field $\vec E$, and the center sphere is the charge $q$

Generalised use of gauss’s law

Generalisation of Gaus law.png

Examples:

1) Infinite line charge:

$$ \oint_S\vec{E}\cdot \text{d} \vec{A}=\frac{Q}{\epsilon_0}=\int_{\text{top}}\vec{E}\cdot \text{d} \vec{A}+\int_{\text{bot}}\vec{E}\cdot \text{d} \vec{A}+\int_{\text{side}}\vec{E}\cdot \text{d} \vec{A} $$

$$ \oint_S\vec{E}\cdot \text{d} \vec{A}=\frac{\lambda l}{\epsilon_0}=E2\pi rl\\\Rightarrow \vec E = \frac{\lambda}{2\pi r \epsilon_0} \hat{r} $$

Ininfite line charge.png

2) infinite plane charge:

$$ \oint_S\vec{E}\cdot \text{d} \vec{A}=\frac{Q}{\epsilon_0}=\int_{\text{top}}\vec{E}\cdot \text{d} \vec{A}+\int_{\text{bot}}\vec{E}\cdot \text{d} \vec{A}+\int_{\text{side}}\vec{E}\cdot \text{d} \vec{A} $$